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Abstract

Legal challenges and transitions of political power cause the future of regulatory policies

to be uncertain. In this article, I investigate how uncertainty about environmental policy

a�ects investment and emissions at coal-�red power plants. I exploit a legal challenge to

the Clean Air Interstate Rule (CAIR) that created variation in the probability that indi-

vidual plants would need to comply with the new policy. I use a di�erence-in-di�erences

approach to compare pollution reductions at power plants located in states subject to

more uncertainty to plants in states that that were not. I �nd that plants with a lower

probability of being regulated invested in fewer capital-intensive pollution controls and

reduced pollution by 13% less on average. Many of these plants did switch to capital-

intensive pollution controls a�er the court upheld CAIR. Policy uncertainty increased

compliance costs by $124 million by delaying e�cient investments.
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Most environmental regulations are subject to considerable uncertainty. Policy uncer-

tainty can arise through several channels. Policies risk being changed a�er elections because

a new administration can overhaul preexisting policies through executive orders and sta�

changes at regulatory agencies.
1

Policy uncertainty also stems from legal challenges of new

federal agency rules. For example, in the United States, the Clean Power Plan, the Mercury

and Air Toxics Standards, the Clean Air Interstate Rule, and the Oil and Natural Gas Air Pol-

lution Standards have all been challenged repeatedly in court. Periodic policy revisions create

an additional source of uncertainty. As an example, the European Union Emissions Trading

System has faced uncertainty over the program’s emissions caps and about how permit trad-

ing rules may change over time. Policy uncertainty can make future market conditions less

predictable and plausibly delays �rms’ investments. Policy uncertainty may have especially

pernicious e�ects in environmental policymaking because these regulations o�en require sig-

ni�cant capital investments, such as overhauls in electricity generation infrastructure. De-

layed investment is particularly problematic because later investment strictly increases total

pollution, which, for a stock pollutant like CO2, could mean that we reach a strictly higher

level of CO2 in the atmosphere and therefore higher global temperatures.

Although economic theory suggests that uncertainty should cause �rms to delay making

irreversible investments (Bernanke, 1983; McDonald & Siegel, 1986; Pindyck, 1988; Dixit &

Pindyck, 1994), we have limited empirical evidence on how policy uncertainty a�ects pollution

abatement and investment.
2

Measuring the causal impacts of policy uncertainty is di�cult

for two reasons: 1) policy uncertainty is di�cult to measure, and 2) in most cases, all �rms

in an industry or country are simultaneously exposed to policy uncertainty, so establishing a

credible comparison group or counterfactual is di�cult.

In this paper, I take advantage of a unique quasi-experiment to estimate how policy uncer-

tainty a�ects pollution abatement and �rm investment decisions. Speci�cally, I use the rollout

of the EPA’s Clean Air Interstate Rule (CAIR). �e EPA announced CAIR in 2005 with the goal

of further reducing sulfur dioxide (SO2) emissions from coal-�red power plants in the Eastern

United States starting in 2010.
3

A�er the EPA announced CAIR, several states and electric

utilities �led lawsuits challenging the legality of the rule. To identify the e�ects of policy un-

certainty on emissions and investment choices, I exploit variation created by a legal challenge

levied by the states of Florida, Minnesota, and Texas, that were located on the border of the

CAIR-regulated area. �ese “challenger” states argued that they should not be subject to the

1
For instance, a�er the 2016 presidential election, Donald Trump withdrew from the Paris Climate Agree-

ment, scrapped the Clean Power Plan, approved orders to build major pipelines, and signed an order to remove

regulations on wetlands and waterways that were introduced by the Obama administration.

2
�ere is a recent empirical literature that investigates the e�ects of policy uncertainty (Born & Pfeifer, 2014;

Fernandez-Villaverde, Guerron-�intana, Kuester, & Rubio-Ramirez, 2015; S. R. Baker, Bloom, & Davis, 2016;

Gulen & Ion, 2015). I use a di�erent identi�cation strategy than these related studies because I can leverage

quasi-experimental variation in exposure to policy uncertainty. I discuss the existing literature in more detail

below.

3
SO2 is harmful to the human respiratory system and is a precursor to acid rain which can damage natural

ecosystems. CAIR also introduced a program to reduce NOx emissions.
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new policy because their geographic location meant that they did not signi�cantly contribute

to other states’ noncompliance with National Ambient Air �ality Standards. As a result of

the legal challenge, coal plants in these “challenger” states had to wait for the court to decide

if they would actually have to comply with CAIR.
4

�is article’s primary contribution is to provide empirical evidence of how �rms react

to environmental policy uncertainty. Although industry groups, politicians, and media o�en

suggest that policy uncertainty can be a drag on investment and economic growth, few studies

have provided empirical evidence supporting this theory.
5

I show that coal plants exposed to more uncertainty due to the legal challenge were less

likely to invest in capital-intensive technologies like �ue-gas desulfurization systems (com-

monly referred to as scrubbers). Plants located in “challenger” states were instead more likely

to purchase costly emissions permits or to use lower-�xed-cost abatement strategies like

switching to lower-sulfur coal.
6

�is allowed them to maintain �exibility and avoid making

an irreversible investment before they knew their regulatory status. �is behavior is consis-

tent with the theoretical predictions from the real options literature: that uncertainty should

cause �rms to delay making sunk investments. Furthermore, I �nd that plants in two of the

“challenger” states were relatively more likely to install scrubbers in the years immediately

following a ruling that they would have to comply with CAIR.
7

If the judicial challenge had

never occurred, plants in Florida and Texas could have installed pollution controls sooner and

saved as much as $216 million in permit expenses.

I also identify the e�ect of policy uncertainty on emissions by using a di�erence-in-di�erences

approach. Namely, I compare changes in emission rates a�er the policy was announced be-

tween coal generators in states exposed to increased policy uncertainty to coal generators in

states that were not. I �nd that units with a lower probability of being regulated due to the le-

gal challenge reduced their sulfur dioxide emission rates by 13% less than units in states more

certain to be regulated under CAIR. Moreover, these di�erences are unique to the CAIR policy:

I show that plants in the “challenger” states did not make systematically di�erent abatement

choices when complying with previous policies. I also demonstrate that selection into the

“challenger” group does not explain the di�erences in emission reductions. In particular, I

�nd similar results when I control for operating company �xed e�ects and restrict the sample

to only �rms that operate power plants in both “challenger” states and other CAIR states.

�e uncertainty generated by court cases is very similar to many other types of policy

uncertainty such as uncertainty stemming from elections or upcoming policy reviews. In all

of these cases, there is a future date at which �rms will learn more about the future regula-

4
To mitigate concerns about selection bias, I provide evidence that compliance costs and environmental

preferences were not systematically di�erent in these “challenger” states.

5
One notable exception is Fabrizio (2012).

6
All coal units were regulated under a cap and trade program so they needed to hold permits for each ton

of SO2 they emi�ed.

7
�e court ruled that plants in Minnesota would not be required to participate in CAIR, but plants in Florida

and Texas would be required to comply.
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tory environment which creates additional incentive to delay current investment decisions.

�e advantage of studying the legal challenge to CAIR is that it a�ected some �rms di�eren-

tially which makes it possible to infer the e�ects of uncertainty empirically. �e results are

informative about how �rms’ investments may respond to uncertainty about future carbon

regulation that emanates from court cases and also from elections, sta� changes at the EPA,

and periodic policy revisions. If �rms expect uncertainty will be resolved at some point in

the future, then they may delay making investments that are otherwise worthwhile. �us the

expected resolution of uncertainty creates option value to waiting, which is true regardless

of whether it’s a judge’s decision or an election that is going to resolve the uncertainty. Cli-

mate policy uncertainty could have serious implications because delayed investment means

that �rms emit carbon pollution for longer leading to a higher stock of greenhouse gases and

higher global temperatures.

Previous literature has theoretically investigated the e�ects of policy uncertainty. Viscusi

(1983) provides a framework for analyzing the e�ects of risk and environmental regulations

on �rm investment decisions. He shows that if investment decisions are irreversible (such as

an investment in a pollution control technology), uncertainty about regulatory policy causes

�rms to invest in fewer pollution controls and make fewer investments to expand output ca-

pacity (i.e., build new power plants). I expand Viscusi’s theoretical framework by allowing

�rms multiple options for reducing pollution, a capital-intensive option (i.e., installing a pol-

lution control device), and also a reversible option (i.e., purchasing cleaner burning fuel). I use

the theory to develop novel theoretical predictions that I am then able to test empirically.
8

In

more recent work, Stokey (2016) develops a model of investment decisions in which uncer-

tainty about a one-time change in tax policy induces the �rm to temporarily stop investing

in order to wait and see how the policy unfolds. A�er the uncertainty is resolved, the �rm

exploits the tabled projects, generating a temporary investment boom.
9

In the current article,

I test empirically whether reducing the probability that a �xed policy will be enacted causes

�rms to stop investing temporarily. I also test whether �rms increase investment a�er the

uncertainty is resolved. �is paper also relates to several strands of theoretical literature in

environmental economics, public economics, development economics, and industrial organi-

8
Speci�cally, I show how policy uncertainty a�ects a �rm’s incentive to choose a capital-intensive abatement

option (scrubber) relative to a reversible abatement option (buying low-sulfur coal). Viscusi (1983) only allows

for a non-reversible abatement option.

9
�is work is distinct from the literature that considers a decision maker with a potential investment project,

and the expected net return from the project evolves over time according to a known stochastic process (McDon-

ald & Siegel, 1986; Pindyck, 1988; Dixit & Pindyck, 1994). �e decision maker must decide when and how much

to invest. �is literature shows that increases in the variance of the stochastic process increase the incentives to

delay investment. In practice, policy uncertainty rarely involves increases in the variance of a stochastic process

(holding mean �xed) but instead involves changes in the probability that a �xed policy will be enacted.
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zation that explore the e�ects of uncertainty on investment.
10

Many economists have also become interested in empirically identifying the consequences

of uncertainty. More speci�cally, a recent literature seeks to empirically measure the e�ects of

policy uncertainty on macroeconomic variables like aggregate investment and unemployment

(Born & Pfeifer, 2014; Fernandez-Villaverde et al., 2015; S. R. Baker et al., 2016) or to price

political uncertainty (Pástor & Veronesi, 2013; Kelly, Pastor, & Veronesi, 2014). �ere is also an

emerging body of work that measures the impact of elections and political events on �rm level

investments (Gulen & Ion, 2015; Kim & Kung, 2016; Jens, 2017). In industrial organization,

Collard-Wexler (2013) and Pakes (1986) study the e�ects of uncertainty on market entry and

research and development. And several papers provide empirical evidence of the e�ect of

non-policy uncertainty on individual actors (Moel & Tufano, 2002; List & Haigh, 2010; Hurn &

Wright, 1994). In particular, Kellogg (2014) empirically tests both the direction and magnitude

of the e�ect of price uncertainty on investment using oil drilling decisions.

I extend the existing empirical literature by taking advantage of a unique event to iden-

tify the e�ects of policy uncertainty on both �rm investment decisions and pollution. I show

that in the case of CAIR, policy uncertainty decreased capital investment, and increased both

emissions and abatement costs.
11

In a related paper, Fabrizio (2012) examines the e�ects of

policy uncertainty on investment in the context of state renewable energy mandates. She

�nds that state-level renewable portfolio standards increased investment in renewable gen-

erating assets on average but investment increased signi�cantly less in states with a history

of regulatory reversal. Fabrizio (2012) uses past state-level regulatory reversals as a proxy

for �rm’s current exposure to uncertainty. One advantage of my research design is that I am

able to clearly identify which �rms were exposed to more uncertainty. I also contribute to the

literature by measuring the e�ects of policy uncertainty on the type of investments that are

made, in addition to the level of investment. Using detailed microdata, I am able to determine

if uncertainty caused �rms to use less capital-intensive abatement strategies. Detailed data

on regulatory compliance and investment allow me to build on related work such as Gulen

& Ion (2015) and Jens (2017) that has typically focused on measuring the impact of policy

uncertainty on aggregate measures of �rm investment such as capital expenditures (CAPX).

Furthermore, I am able to show how �rm behavior changes a�er uncertainty is resolved and

to quantify the additional compliance costs a�ributable to policy uncertainty.

10
A growing literature in environmental economics compares the theoretical e�ects of di�erent regulatory

policies for inducing investment and R&D in new technologies (Requate & Unold, 2003; Requate, 2005; Krysiak,

2008; La�ont & Tirole, 1996; Chao & Wilson, 1993). Notably, Zhao (2003) develops a rational expectations general

equilibrium model of irreversible abatement investment to show how uncertainties about costs a�ect investment

under permit trading versus emissions taxes. In public economics, Hasse� & Metcalf (1999) simulate the impact

of tax policy uncertainty on the level of aggregate investment. In development economics, Rodrik (1991) shows

that policy uncertainty can act as a tax on investment in developing countries a�empting to enact reforms.

In industrial organization, Teisberg (1993) presents a model of capital investment choices by regulated �rms

under uncertain regulation. �e model justi�es utilities delaying investment and choosing shorter-lead-time

technologies.

11
Emissions were higher at plants in the “challenger” states relative to other plants regulated under CAIR.
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In the next section, I discuss the institutional background of the electric-power industry,

the history of air pollution regulation in the United States, and speci�c details of the Clean Air

Interstate Rule (CAIR). In Section 3, I develop a two-period model of compliance under policy

uncertainty that I use to develop predictions that can be tested empirically. In the fourth

section, I explain the empirical methods and data sources used for the analysis. Section 5

discusses the results and Section 6 concludes.

2 Policy and Institutional Background

In 1989, the George H.W. Bush Administration proposed new amendments to the Clean Air

Act. As part of the amendments, the United States would institute the �rst large-scale cap and

trade program to reduce SO2 emissions from electric power plants. �e Acid Rain Program

(ARP) began in 1995, regulating only the largest polluting facilities at �rst and introducing

nearly all coal-�red power plants in the lower 48 states to the program by 2000. Many consider

the program as hugely successful and even regard ARP as a benchmark model for quantity-

based instruments for pollution control. ARP reduced SO2 emissions by over 40% in the �rst

ten years and previous analyses suggest that the net bene�ts of the program were between

$58-$114 billion per year (Schmalensee & Stavins, 2013).

Despite the large bene�ts achieved from ARP, the EPA determined that many states were

still signi�cantly contributing to non-a�ainment of National Ambient Air �ality Standards

(NAAQS) for �ne particles and/or 8-hour ozone in downwind states. In May 2005, the EPA

introduced the Clean Air Interstate Rule (CAIR) in order to further reduce NOx and SO2 emis-

sions from power plants located in 28 states in the eastern United States. CAIR would include

three new cap and trade programs, including a new program e�ectively replacing the Acid

Rain Program (ARP) for eastern states. �e program would continue to use permits from the

Acid Rain program, but starting in January 2010, eastern states under CAIR would now have

to surrender two permits for each ton of SO2 emi�ed instead of one.

Since all ARP permits of vintage 2009 or earlier could be used to o�set one ton of SO2

emissions under the new CAIR program, plants had an incentive to start making immediate

emission reductions before the new program took e�ect. If �rms made emission reductions

between 2005 and 2010, they could “bank” their extra emissions permits to use or sell under

the new more stringent policy. �e increased incentive to reduce emissions was immediately

re�ected by increased ARP allowance prices, which can be seen in Figure 7 of Appendix D.

Sources that were included in the CAIR SO2 program reduced their emissions by over 50% in

the �ve years between the initial CAIR announcement and the start of the new program (EPA,

2016).
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Figure 1: CAIR SO2 Regulatory Footprint

2.1 Regulatory Challenge and Uncertainty

Shortly a�er the announcement of CAIR, several states and industry groups �led a series of

lawsuits challenging the legality of the new EPA rule. �e collection of lawsuits was aggre-

gated into a single case called North Carolina vs. Environmental Protection Agency. Most of

these lawsuits a�ected all CAIR states, however, three states located along the borders of the

policy footprint (Florida, Minnesota, and Texas) claimed that their emissions did not signif-

icantly a�ect downwind states’ compliance with National Ambient Air �ality Standards.
12

�ey argued that the EPA should therefore not include them in the new CAIR program. �is

legal challenge subjected power plants located in these three states to a higher level of policy

uncertainty than power plants in the other states since they would need to wait to see if the

court would overturn the current rule. If the court did vacate the rule, these states would be

operating under a signi�cantly less stringent regulatory regime.
13

�e D.C. Circuit Court made a �nal ruling on CAIR in December 2008. �e court granted

a permanent stay of the rule for Minnesota but decided that Texas and Florida would be re-

quired to participate in the program.
14

�e court agreed with Minnesota’s claim that their

emissions were not signi�cantly a�ecting downwind states’ compliance with NAAQS. On the

other hand, the court rejected Texas and Florida’s similar claims. In 2010, the CAIR SO2 pro-

gram took e�ect for all of the initially planned states except for Minnesota. Figure 2 includes

a timeline of critical events in the rollout of CAIR.

12
Jet streams in North America typically cause the wind to blow from west to east.

13
Figure 1 depicts the states included in the CAIR SO2 program and separately identi�es the “challenger”

states which explicitly challenged their inclusion in the program.

14
�e D.C. Circuit Court made an initial ruling in July 2008 to stay implementation of CAIR for all states. �e

court ruled that EPA did not do a satisfactory job accounting for the e�ects of pollution in particular downwind

states. In December, the court changed the ruling to allow CAIR to stand while the EPA �xed issues with the

rule.
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Figure 2: CAIR Regulatory Timeline

�roughout the rest of the article, I focus on measuring the e�ects of policy uncertainty

that arose from the border states’ legal challenge to the CAIR program. �e legal challenge

exposed plants to varying levels of uncertainty. I exploit this variation to identify the e�ects

of policy uncertainty on pollution abatement, investment in control technologies, and coal

purchases.

For the empirical analysis, it would be ideal if the legal challenge levied by Florida, Min-

nesota, and Texas occurred in isolation. However, North Carolina vs. Environmental Protection
Agency also contained other challenges to CAIR. �e D.C. Circuit Court of Appeals sepa-

rated petitions into several categories that were relevant to the CAIR SO2 program: (1) Texas,

Florida, and Minnesota argued against their inclusion in CAIR; (2) North Carolina wanted

to limit permit trading across geographic areas so that speci�c plants that were contributing

to nona�ainment in downwind states would be required to reduce emissions;
15

(3) Several

electric utility companies contested EPA’s authority under Title I and Title IV to require �rms

to retire more than one allowance for each ton of emissions. Because several petitions were

�led concurrently, one might think that it would be di�cult to identify the causal e�ect of the

border states’ challenge (1). In particular, the estimated e�ect of the border states’ challenge

could be confounded by the e�ects of the other petitions (2) and (3). �is possibility is impos-

sible to rule out with certainty. However, the la�er two petitions were broad challenges to

the structure of the CAIR policy, either of these challenges could lead to the entire CAIR pro-

gram being overturned.
16

�erefore, uncertainty stemming from these two challenges likely

a�ected all power plants within CAIR equally (including plants in FL, MN, and TX), whereas,

the challenge levied by the three border states generated additional uncertainty for plants

within those states. For this reason, the variation created by the border states’ challenge is

15
North Carolina argued that the program did not mandate emissions reductions from sources that were

contributing to non-a�ainment of NAAQS in downwind states. Under a cap-and-trade program, upwind plants

could avoid making emissions reductions by instead choosing to purchase more allowances.

16
In fact, the court agreed with parts of both of these challenges, and as a result CAIR was replaced by the

Cross-State Air Pollution Rule (CSAPR) in 2014. �e CSAPR program did not use ARP permits and limited

interstate trading, which contributed to the eventual collapse of SO2 allowance prices.
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still valuable for identifying the e�ects of policy uncertainty. If the concurrent legal chal-

lenges a�ected all states in CAIR equally, the di�erence-in-di�erences approach would still

provide unbiased estimates of the e�ect of policy uncertainty associated with (1). In Section

4, I discuss threats to identi�cation in more detail and propose several robustness checks and

alternative models to address these potential concerns.

In the next section, I develop a two-period model of �rm compliance with pollution regu-

lation. I use the model to establish testable predictions about �rm behavior under uncertainty.

I then test the theoretical predictions using unit-level data in the following sections.

3 Model of Compliance Under Policy Uncertainty

Consider a two-period model. In each period, �rms must pay a fee for each unit they emit.

In the �rst period, the regulator sets the emission price equal to P1. �e emission price could

also arise indirectly through an emission cap set by the regulator. However, the second-period

emission price is not revealed until a�er the �rst period is completed. With probability ρ ∈
[0, 1], the regulator will impose a more stringent price PH

2 (more stringent emissions cap) and

with probability 1−ρ, she will impose a less stringent price PL
2 (less stringent emissions cap),

where PH
2 > PL

2 .
17

�is uncertainty could result from a pending judicial review or from an

upcoming election.

�ere are M risk-neutral �rms and every �rm emits pollution as a byproduct of each

unit of output. For the case of an emission tax, M can be arbitrarily large. For an emission

cap, assume that M represents a small subset of �rms in the permit market such that each

�rm’s abatement and investment has no in�uence on the equilibrium permit price.
18

Reducing

emissions is costly for �rms. However, �rms can reduce their marginal abatement cost by

investing in a capital-intensive technology (i.e., a scrubber for removing SO2 emissions). Firms

that invest in the technology must incur a �xed cost Ki
. �e cost of capital varies for each

�rm. In particular, capital costs are drawn from Ki ∼ F (K), where F is the cumulative

distribution function of K . I assume F (K) is continuous and di�erentiable. Investing in the

technology is irreversible. Firms can reduce their pollution without installing the capital-

intensive technology, but they must incur higher marginal abatement costs (e.g., purchasing

low-sulfur coal).
19

Absent any emission reductions, each �rm would emit e units of pollution. A �rm’s real-

ized emissions in period t, eit, are equal to the baseline emissions level net of abatement ait,

17
In the case of the CAIR program, PL

2 = P1 and PH
2 = 2P1. Each unit included in CAIR had to surrender

two permits for each ton of SO2 emissions starting in 2010, units not include in CAIR would continue to submit

one permit per ton of SO2.

18
For the empirical application, I focus on uncertainty that a�ected a small group of �rms and was unlikely

to have a substantial e�ect on the equilibrium permit market price.

19
In practice, switching to low-sulfur coal does incur a �xed cost to retro�t boilers and equipment; however,

these costs are generally very small in comparison to the capital cost of installing a scrubber.
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so eit = e − ait. Abatement cost C(ait, Iit) is a function of the level of abatement ait and

Iit ∈ {0, 1}, an indicator function that is equal to one if the �rm has installed the capital tech-

nology and zero otherwise. In particular,Ca(ait, 1) ≤ Ca(ait, 0) for all ait, where the subscript

a signi�es partial derivative with respect to ait. �is means the marginal cost of abatement

is lower once the capital technology is installed.
20

Additionally, assume that the abatement

cost function is strictly increasing and convex in the level of abatement: Ca(ait, Iit) > 0 and

Caa(ait, Iit) > 0, where Caa denotes the second-order partial derivative of C with respect to

ait. Finally, normalize C(0, Iit) = 0. �is normalization implies that choosing zero abate-

ment is costless regardless of the technology decision. Also, notice that conditional on the

decision to adopt the capital technology, the abatement cost function is identical across �rms.

Figure 3 shows an illustration of how capital investment in a technology could shi� marginal

abatement cost.

Figure 3: Marginal Abatement Cost with and without Technology Investment

Ca(ait, 1) is the marginal abatement cost for units that have invested in the capital technology (i.e.,

coal units that have installed a scrubber). Ca(ait, 0) is the marginal abatement cost for units that

have not invested in the technology (coal units can still reduce emissions by buying low-sulfur coal).

Given an emission price of P1, aI1 is the optimal abatement level for units that have invested in the

technology and aN1 is the optimal abatement level for units that have not.

Each period, t, �rms choose whether to install the technology. �e installation decision

is permanent: if installed; the technology will remain in any future periods. In addition,

20
Modeling a new investment as reducing marginal abatement cost is standard in the theoretical literature

investigating environmental policy instruments and technology adoption (Jung, Krutilla, & Boyd, 1996; Milliman

& Prince, 1989; Requate & Unold, 2003; Shi�u, Parker, & Jiang, 2015). Amir, Germain, & Van Steenberghe (2008)

and E. Baker, Clarke, & Shi�u (2008) provide additional discussion about modeling technical change and the

marginal cost of abatement. In the context of SO2 abatement, a coal unit that has not installed a scrubber

(capital technology) can reduce emissions by purchase low-sulfur coal, which entails large shipping costs for

plants located in the Midwest and East. Units that have installed the technology can reduce pollution by simply

running their scrubber. �is entails some operation and maintenance costs, but these costs are relatively small

compared to buying more expensive low-sulfur coal.
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�rms choose ait and an output quantity qit to maximize expected pro�ts. For this analysis,

I assume that output quantity is �xed at q = q. �is is a reasonable assumption for coal-

�red power plants during the time period of this study since coal plants were almost always

inframarginal and were already operating at a capacity constraint. �is assumption is also

common in literature (Fowlie, 2010) and allows the �rm’s abatement decision to be modeled

independently of the output decision. Omi�ing the �rm subscript i and superscript i for

readability, the �rm’s problem can be wri�en as:

min

a1,I1
P1 · (e− a1) + C(a1, I1) +K · I1

+ 1
1+r

E
[
min

a2,I2
{P2 · (e− a2) + C(a2, I2) +K · (I2 − I1)}

]
s.t. at ∈ [0, e], It ∈ {0, 1}, I2 ≥ I1,

(1)

where E is the expectation operator taken over the uncertain emission price in period 2 and r

is the �rm’s per-period discount rate. �e �rm’s problem is to choose capital investment and

abatement to minimize the sum of current costs and expected costs in the next period, subject

to the constraint that abatement must be weakly greater than zero and less than the base-

line emissions level. �e �rm must also consider the irreversibility of the capital-investment

decision.

�e �rm’s optimal level of �rst-period abatement is determined by the following �rst order

condition for an interior solution:

Ca(a1, I1) = P1 (2)

�is �rst order condition is consistent with the standard intuition that �rms should set their

marginal cost of abatement equal to the permit price. All �rms that do not install the tech-

nology will choose the same optimal abatement level, aN1 , and all �rms that do install the

technology will choose aI1 as their optimal abatement level. Furthermore, it must be true that

aN1 ≤ aI1, which follows from the assumption thatCa(at, 1) ≤ Ca(at, 0) for all at. Graphically,

Figure 3 shows that the optimal abatement levels, aI1 and aN1 , are determined by �nding the

points where the marginal abatement cost curve intersects with the emission price.

�e capital investment choice is a dynamic decision. A pro�t-maximizing �rm must con-

sider not only the direct costs and bene�ts of investing today, but also the option value of

waiting until next period to decide a�er the uncertainty has been resolved. �e solution to

the problem will consist of a cuto� rule for investment; all �rms with a capital investment

cost Ki ≤ K∗1 will install the technology, and all �rms with higher capital costs will not.
21

A �rm should install the capital technology in the �rst period if the expected net costs from

installing immediately are less than the expected costs from waiting until the second period

to decide. In particular, �rms should invest if:

21
See Requate & Unold (2003) for more details.
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P1 · (e− aI1) + C(aI1, 1) +K + E[min

a2
{P2 · (e− a2) + C(a2, 1)}]

≤ P1 · (e− aN1 ) + C(aN1 , 0) + E[min

a2,I2
{P2 · (e− a2) + C(a2, I2) +K · I2}]

(3)

We now consider the testable predictions regarding �rm behavior implied by the model.

Proofs of all the propositions are provided in the appendix.

3.1 �eoretical Predictions

�e �rst proposition considers how a change in the probability of the more stringent policy,

ρ, a�ects �rms’ decision to invest in the capital technology in the �rst period.

Proposition 1 Reducing the probability ρ that the stringent emission price will occur will reduce
investment in the capital technology in the �rst period. Formally, F (K∗1) (weakly) increases in
ρ.

�e �rst result is intuitive. Reducing the probability of the high emission price decreases

the expected future payo� from investing in the capital abatement technology. �is causes a

smaller share of �rms to invest. In the appendix, I provide a proof by explicitly writing out the

cuto� rule as function of ρ and di�erentiating to obtain a comparative static. In the context

of CAIR, we would expect units located in Florida, Minnesota, and Texas to be less likely to

install scrubbers during the period before the court made a ruling.

�e second proposition shows how changes in the probability of a high emission price

impact emissions during the �rst period.

Proposition 2 Reducing the probability ρ that the stringent emission price will occur (weakly)

increases aggregate emissions in period one. Formally,
de1
dρ
≤ 0, where e1 =

∑
i

ei1.

�is proposition follows closely from Proposition 1. Because smaller ρ leads fewer �rms to

adopt the technology and �rms that install the technology will choose to emit less, emissions

will be higher in period 1. �e second proposition suggests that units that were less likely to

be regulated under CAIR, such as those units located in the three “challenger” states, should

have higher emissions during the period before the court’s ruling.

�e next proposition considers the behavior of �rms who choose to not install the capi-

tal technology. Uncertainty about the future emission price will impact the total amount of

abatement these �rms undertake (e.g., change the amount of low-sulfur coal they decide to

purchase).

Proposition 3 Aggregate abatement by �rms that do not adopt the technology (who choose to

purchase low-sulfur coal) weakly decreases with ρ. Formally,
daN

1

dρ
≤ 0, where aN

1 =
∑
i

ai1 ·

1(Ii1 = 0).
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As the probability of the stringent emission price decreases from one, fewer �rms will adopt

the capital technology in period 1. However, because there is an emissions price in period 1,

many �rms will still want to reduce emissions (relative to e) while maintaining the option to

adopt the technology in period 2. Figure 3 shows graphically that the �rms that do not adopt

the technology will still choose a positive level of abatement. In the context of CAIR, �rms

could choose a lower-�xed-cost abatement strategy like burning lower-sulfur coal to reduce

emissions without making a sunk-cost investment in a scrubber.

Proposition 3 follows closely from Proposition 1. As the probability of the high emission

price decreases, more �rms will decide not to adopt the technology. Since all �rms that do

not adopt the technology will choose to abate aN1 , there will be more aggregate abatement

by non-adopters. In the context of CAIR, I can test whether the legal challenge by the three

border states led plants in those states to purchase more low-sulfur coal than plants in other

CAIR states during the period before the court’s ruling.

�e �nal proposition shows how uncertainty during the �rst period can alter capital in-

vestment in the second period.

Proposition 4 Reducing the probability ρ that the stringent emission price will occur will cause
more capital investment in the second period if the stringent emission price happens to be realized.

As ρ decreases, fewer �rms will adopt the technology in period 1. In the case that the high

emission price PH
2 does occur, a larger share of �rms will then choose to adopt in the second

period. �is proposition suggests that a�er the court ruled to include Texas and Florida in

CAIR, we should see relatively more scrubbers installed in those states than in other CAIR-

regulated states a�er the court decision.

Testing Proposition 2 is the central focus of the empirical section of this paper. In partic-

ular, I test if reductions in the probability of regulation increased emissions during the period

of uncertainty. �e judicial challenge of CAIR by three states generated variation in �rms’

probability of having to comply with CAIR. Speci�cally, plants in these three states were less

likely to have to comply with the new regulation than �rms in other states under CAIR. I

use this variation to test for di�erences in emission reductions, and also to directly test for

di�erences in investment and abatement methods (Propositions 1 and 3). Furthermore, I test

whether investment in scrubbers (capital technology) increased more in these states a�er the

court ruled that they would need to comply (Proposition 4).

Table 1 summarizes the propositions. Column 2 provides a short description of the theo-

retical result and the third column describes the associated empirical prediction that can be

taken to the data. �e fourth column provides the theoretically predicted regression coe�-

cients, which are discussed in detail in the following sections.
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Table 1: �eoretical Predictions and Associated Empirical Predictions

�eoretical Prediction Empirical Prediction Predicted Sign

Proposition 1 ρ ↓ ⇒
∑

i Ii1 ↓

Units in “challenger”

states should be less

likely to install a

scrubber.
� ∗

β1 < 0

Proposition 2 ρ ↓ ⇒ e1 ↑
Units in “challenger”

states should have

higher emissions.
� ∗

β1 > 0

Proposition 3 ρ ↓ ⇒ aN
1 ↑

Plants in “challenger”

states should have

lower sulfur content in

their coal purchases.
� ∗

β1 < 0

Proposition 4

If P2 = PH
2 , then ρ ↓

⇒
∑

i Ii2 ↑

Units in “challenger”

states should be more

likely to install a

scrubber a�er the

court ruled to enforce

the high emission

price.
∗

βt > 0, ∀ t > 2009

�
Before the court ruling.

∗
Relative to other units regulated under CAIR.

4 Data and Empirical Methods

In order to test the propositions from the previous section, I collect source-level data from the

EPA’s Continuous Emissions Monitoring System (CEMS) for the years 2002-2011.
22

CEMS is

a nation-wide database used to monitor compliance with federal emissions programs such as

the Acid Rain Program and the Clean Air Interstate Rule SO2 Trading Program.

�e EPA Clean Air Markets Program database allows users to collect source-level emis-

sions data at the hourly level. For this study, I aggregate the data to the annual level. �e

CEMS data include gross output (MWh), NOx emissions (tons), CO2 emissions (tons), SO2

emissions (tons), and heat input (MMBtu) at the boiler level. �e CEMS database includes all

generators with nameplate capacity over 25 MW and thus includes nearly all coal units in

the contiguous United States. �e EPA also provides descriptive data for each unit including

geographic coordinates, beginning date of operation, operating company, and a description

of any pollution control technology installed.

I restrict the sample to include only coal-�red boilers because coal boilers emit over 99.5%

of all SO2 emissions from the electric-power industry. Furthermore, I limit the sample to

include only coal units that did not already have a scrubber installed before the CAIR an-

nouncement in 2004. Coal units that already had a scrubber installed did not have an invest-

ment decision to make, so they are not helpful for testing the propositions from the previous

22
2002-2011 is the time frame for the primary analysis. I also collect data going back as far as 1996 that I use

for an additional test.
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section. Additionally, I focus on coal units that operated throughout the sample.
23

To be�er understand how uncertainty a�ects coal-purchasing decisions, I also obtain plant

level fuel receipts from the Energy Information Agency (EIA) and the Federal Energy Regu-

latory Commission (FERC). From 2002-2007, plants that were subject to cost-of-service reg-

ulation reported fuel purchases annually on FERC Form 423 and deregulated plants reported

on EIA Form 423. From 2007-2011, all coal plants reported fuel purchases on a single form,

EIA Form 923. �e fuel receipts data include the quantity of coal purchased (short tons), the

sulfur content of fuels (percentage of weight), heat content (MMBtu), and ash content. Price

and other fuel contract details are provided for regulated plants. A useful feature of the fuel

receipts data is that it indicates if a plant is under cost-of-service regulation. I merge the EIA

data with the EPA data using unique Plant ID numbers included in both data sets. �is allows

me to identify the regulatory status of each unit in the EPA data.

Table 2 provides summary statistics for units located in each of the three groups of states

in 2004, right before CAIR was announced. �e �rst column includes all units included in the

CAIR SO2 trading program except the three “challenger” states. �e third column summarizes

units located in Florida, Minnesota, and Texas and the second column includes all other coal

units. Units in CAIR had higher emission rates on average than non-CAIR units and units

in the three “challenger” states. Units in CAIR also were older than other units, less likely

to be regulated and produced less gross output. Distance to PRB is the unit’s distance to the

Powder River Coal Basin in Wyoming. Units in Non-CAIR states were much closer to the

Powder River Basin on average and likely had greater access to low-sulfur coal. I limit the

sample to only units in each group that did not have a scrubber installed in 2004 when CAIR

was announced.

Comparing the 2004 natural log of SO2 emission rates in the bo�om of Table 2 to the

natural log of emission rates for 2009, it’s clear that emission reductions were much larger

in CAIR states. �e average log emission rate dropped by 0.46 in CAIR states, while it only

dropped by .148 in non-CAIR states and 0.175 in “challenger” states. CAIR states were also

more likely to install scrubbers. 21% of CAIR units installed scrubbers between 2004 and

2009, compared to only 9% of both non-CAIR and “challenger” units. �ese descriptive results

are consistent with the theory that policy uncertainty delays abatement and investment, but

on their own are not proof of a causal relationship. It is possible the di�erence between

emission reductions in “challenger” states and other CAIR states were driven by di�erences

in unit characteristics between the two groups and not by policy uncertainty. To account for

this possibility, I also employ a nearest-neighbor estimator to obtain a more balanced sample

across the two groups.
24

Another threat to identi�cation is that selection into the “challenger” group was itself en-

23
As a robustness check, I also run regressions for the entire population of coal units (including those that

were scrubbed before 2004) and for the complete unbalanced panel of units.

24
Table 4 in the next section shows that for the matched sample, CAIR units and Challenger units look very

similar in age, baseline emissions, distance to PRB, and regulatory status.
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Table 2: Coal Unit Summary Statistics by Group Before CAIR

CAIR Non-CAIR Challenger Total

Gross Load (TWH) 1.881 2.247 2.649 1.994

(1.683) (1.662) (1.730) (1.695)

Distance to PRB (Miles) 1906.0 1142.6 1658.7 1764.1

(392.3) (581.8) (580.4) (524.5)

Regulated (0,1) 0.740 0.913 0.818 0.773

(0.439) (0.284) (0.390) (0.419)

Age (Years) 41.00 34.13 32.95 39.32

(9.557) (9.144) (9.937) (9.986)

Scrubber Installed by 2004 (0,1) 0 0 0 0

(0) (0) (0) (0)

Scrubber Installed by 2009 (0,1) 0.217 0.0874 0.0909 0.187

(0.413) (0.284) (0.291) (0.390)

Log SO2 Rate 2004 0.271 -0.363 -0.178 0.136

(0.601) (0.428) (0.470) (0.619)

Log SO2 Rate 2009 -0.191 -0.539 -0.326 -0.257

(1.001) (0.732) (0.566) (0.945)

Di�erence (2009-2004) -0.462 -0.175 -0.148 -0.393

(0.958) (0.645) (0.526) (0.898)

N 518 105 44 677

�e descriptive statistics describe boiler characteristics in 2004. Distance to PRB is the unit’s distance to the

Powder River Coal Basin in Wyoming, this serves a proxy for the unit’s ability to purchase lower-sulfur sub-

bituminous coal. Capacity is measured as the unit’s maximum heat input in btu (billions). “SO2 Di�erence” is

the change in emission rates between 2004 and 2009. �e sample only includes units that did not already have

a scrubber installed by 2004. Standard deviations are in parentheses.

dogenous. �is would be the case if generation companies located in Florida, Minnesota, and

Texas had a particular preference against reducing emissions and decided to �le the lawsuit

for that reason. An additional possibility is that emission rates in each of these groups were

already following di�erent time trends not associated with CAIR at all. In the next section, I

describe the empirical model used to address these potential concerns.

4.1 Empirical Model and Identi�cation

In this section, I discuss the econometric model used to test the predictions from the theo-

retical model. First, I describe the di�erence-in-di�erences (DID) approach used to test if the
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legal challenge of CAIR caused a decrease in pollution abatement (Proposition 2). I then de-

scribe how a similar empirical approach can be used to test Proposition 3. Speci�cally, I test

if uncertainty generated by the legal challenge caused �rms that did not invest in scrubbers

to increase purchases of low-sulfur coal. Next, I explain how a slightly modi�ed but simple

framework can be used to test whether the legal challenge reduced investment in capital-

intensive pollution controls (scrubbers) during the period before the uncertainty was resolved

(Proposition 1). Finally, I introduce a regression framework to test if relative investment in

scrubbers changed a�er the court ruling (Proposition 4).

4.1.1 Empirical Test of Proposition 2

In order to test Proposition 2, I compare changes in the natural logarithm of SO2 emission rates

a�er the policy announcement at units subject to additional legal uncertainty to other units

in CAIR and units not regulated by CAIR. I use both regression and matching approaches to

control for observable characteristics of the coal units. �e states never regulated under CAIR

serve as a natural “control” group. All states initially intended to be regulated under CAIR are

de�ned as the “treatment” group. Additionally, I de�ne a “treatment” subgroup composed of

units located in one of the states subjected to additional policy uncertainty.

A DID approach relaxes the assumption that the average level of the dependent variable

would have been the same absent “treatment”. Instead, it must be true that trends in the

dependent variable would have been the same absent “treatment”. By adding controls, we are

ensured that the estimated e�ect is only being identi�ed o� of units with similar observable

characteristics. I start by estimating the following regression:

ln(Yit) = β11[Challenger]it + β21[CAIR]it + x′iη + γt + εit (4)

�e dependent variable is the natural log of unit i′s SO2 emission rate in lbs. per MMBtu

in year t. I use a log-transformed dependent variable in the main speci�cation because in-

vestment in a scrubber leads to a proportional reduction in emission rate at a coal boiler.
25

1[Challenger]it is an indicator variable, equal to one if the year is 2005-2009 and the unit is

located in a Minnesota, Florida, or Texas. �e period of 2005-2009 includes years a�er the pol-

icy was announced, but before the court made its ruling. 1[CAIR]it is an indicator variable,

set equal to one if the unit is located in a CAIR state including Florida, Minnesota, and Texas,

and the year is 2005-2009. γt is a set of year �xed e�ects and x′i contains unit �xed e�ects in

my preferred speci�cation. For speci�cations without unit �xed e�ects, x′i contains a vector of

controls such as the unit’s age in 2004, regulatory status, distance to the Powder River Basin,

and log emission rate in 2004 before the policy announcement. Several studies have shown

compliance choice can be a�ected by a plant’s regulatory status (Cicala (2015), Fowlie (2010)),

25
I use SO2 per MMBtu instead of SO2 per MWH because gross output data is missing for some units in the

sample. As a robustness check, I also run the model with SO2 emissions rate, total SO2 emissions (levels) as the

outcome variable.
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this control ensures only di�erences between plants under the same regulatory regime are

being compared. I also control for the unit’s distance to the Powder River Basin, the Powder

River Basin is the primary mining location for low-sulfur coal, so this control proxies for a

�rm’s ability to purchase low-sulfur coal. Finally, I control for each unit’s age in 2004 and

log emission rate in 2004, since a plant’s time until retirement and baseline emissions rate are

likely to a�ect their incentive to invest in pollution reductions.

�e coe�cient of interest is β1. I include units in Florida, Minnesota, and Texas in both the

“CAIR” and “Challenger” groups. �erefore, β1 can be interpreted as the average percentage

change in emission rates in Florida, Minnesota, and Texas relative to units in other CAIR-

regulated states. Proposition 2 predicts that units in the “challenger” states should be less

likely to reduce emissions. If this is true, β1 should be positive. On the other hand, we would

expect β2 to be negative because units in states regulated under CAIR should be more likely

to reduce emissions relative to units in states that are not subject to the rule.

β1 is the “di�erential e�ect” of the announcement of CAIR for plants exposed to additional

policy uncertainty. In order to consistently estimate the di�erential e�ect, several assumptions

must hold.
26

First, recall that units belong to one of three di�erent groups: (1) units that

were included in CAIR but were not in a “challenger” states (treatment 1), (2) units that were

included in CAIR but were located in a “challenger” state (treatment 2), and (3) units that

were not included in CAIR (control group). To identify the di�erential e�ect between (1) and

(2) it must be true that a�er controlling for observed covariates (unit �xed e�ects), average

emission rates of units that received either “treatment 1” or “treatment 2” would have followed

parallel trends relative to the control group absent the intervention. More speci�cally, the

trends in average emissions for each of these groups must have had equal slopes in the case

that CAIR was never announced. �is is the standard unconfoundedness assumption. Figure

4 shows the average log SO2 emissions trends for each of the three groups in the years before

the CAIR SO2 program was announced in 2005. A visual inspection shows no systematic

deviation in the slopes of the trend lines between the groups. Furthermore, the trends had

been nearly �at for each of the groups during the four years before the policy was announced.

Identifying the di�erential e�ect also requires an additional unconfoundedness assumption.

We require that units in the “treatment 2” group would have behaved the same on average as

“treatment 1” units in the case that they had instead received “treatment 1”. In particular, if

CAIR was introduced but there was no challenge by the border states, we require that plants

in the “challenger” states would have made the same average emissions reductions as plants

in other CAIR states (a�er controlling for observable unit characteristics). �is assumption is

not directly testable but there is indirect evidence that it is likely to hold. In Figure 4, there

is a decrease in emission rates for each of the groups at the end of the 1990s. �is decrease

was the result of compliance with Phase 2 of the Acid Rain Program. As an indirect test of

the second unconfoundedness assumption, I estimate the DID model (4) with the pre-period

26
See Hotz, Imbens, & Klerman (2006) for a discussion of the identi�cation of di�erential e�ects.
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Figure 4: Log SO2 Emission Rates Trends by Group

�e plo�ed trend lines represent the mean Log SO2 emission rate (residual) for each

group a�er controlling for unit �xed e�ects. �e �rst red vertical line indicates the

initial announcement of CAIR. �e second vertical red line represents the date the

court made its �nal ruling.

as 1998-1999, and the post-period as 2000-2001. �e results of these regressions can be found

in Panel A of Table 6 of the appendix. In all speci�cations of these falsi�cation tests, I fail

to reject the null hypothesis that β1 = 0. �e point estimates are also small in magnitude.

Panel B of Table 6 of the appendix presents regressions with the dependent variable as a

binary choice to install a scrubber. I also fail to reject the null hypothesis that units in Texas,

Florida, and Minnesota were equally likely to install scrubbers to comply with the Acid Rain

Program Phase 2 relative to other CAIR states. �is exercise provides evidence that units

in Texas, Florida, and Minnesota were not systematically di�erent from units in other CAIR

states when complying with previous SO2 regulations.

Even if compliance decisions in “challenger” states were not di�erent in the past, it is still

possible �rm ownership has changed over time and utility executives located in these states

now have a stronger preference against making emission reductions. To account for potential

bias through this channel, I also run the model (4) on a restricted sample only including oper-

ating companies that owned plants in “challenger” states and also in other CAIR states. I also

include operator �xed e�ects. �is speci�cation ensures I am comparing abatement choices in

states subject to more policy uncertainty to abatement choices in other states, while holding

managerial preferences constant.

Finally, to ensure that the regression estimates are unbiased, the stable unit treatment

value assumption (SUTVA) must hold. �is means that policy uncertainty in Texas, Florida,

and Minnesota must not have changed the abatement choices of units outside of those states.
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�is assumption may not hold if power plants in the “challenger” states made up a large

enough portion of the SO2 permit market to signi�cantly a�ect allowance prices. �ere are

two reasons why a violation of SUTVA is unlikely to cause problems in identifying a causal

e�ect. First, since emissions from power plants in the three “challenger” states made up only

8.9% of total SO2 emissions in 2004, the exclusion of these three states would have decreased

permit demand by 4.8%.
27

�is change would be unlikely to cause a large enough decrease in

permit prices to drastically change abatement decisions in other states. Secondly, even if the

legal challenge by Texas, Minnesota, and Florida a�ected permit prices, the e�ect would likely

bias against �nding β1 > 0. Since the legal challenge reduced the probability that �rms in the

“challenger” states would have to comply with CAIR, this would reduce expected demand for

permits. Also, because CAIR would use the same permits as ARP and ARP permit allocations

were predetermined, any �rm being included (or discluded) did not change the overall supply

of permits available. �at is, inclusion in CAIR only changed the number of permits that

needed to be submi�ed to the regulator per ton of emissions but not the allocation of permits.

�erefore, a reduction in expected demand for permits while holding supply �xed should drive

down permit prices. Lower permit prices should cause other �rms in CAIR to be less likely

to make early investments in pollution controls. Furthermore, increased uncertainty about

future permit prices should cause other plants regulated under CAIR to be more likely to delay

their own investment. �is would bias against �nding the result that plants in “challenger”

states were more likely to delay making pollution reductions relative to other CAIR-regulated

plants.

4.1.2 Empirical Test of Proposition 1 and 3

In addition to measuring the impact of policy uncertainty on pollution outcomes, I am also

interested in the mechanisms driving any di�erences in pollution. Coal units typically have

two options for reducing SO2 emissions. Units can install a �ue-gas desulfurization system

(scrubber) or they can switch to lower-sulfur coal. Installing a scrubber requires a relatively

large �xed-cost investment and has low operating costs. In contrast, switching coal rank typ-

ically requires a relatively smaller �xed cost and higher variable costs. �e theoretical model

predicts that coal units that were subjected to additional legal uncertainty should increase

total purchases of low-sulfur coal (low �xed-cost abatement). For example, we may see �rms

in the “challenger” states making more non-scrubber abatement than �rms in states where

the probability of regulation was closer to one. I estimate the direction and magnitude of

this e�ect by running the same DID regression with log sulfur content of coal purchases as

the dependent variable. Since coal purchase data is recorded at the plant level, I run these

regressions with observations at the plant-year level instead of the boiler-year level. If β1 is

negative, it would provide evidence that plants located in the states challenging the ruling

27
Total demand for permits can be determined by multiplying 2004 SO2 emissions by 2 for units included in

CAIR, and multiplying 2004 SO2 emissions by 1 for non-CAIR units and summing across all units.
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were more likely to reduce the sulfur content of their coal during the period of uncertainty.

I can also use a similar framework to test if units with a lower probability of being regulated

under CAIR were less likely to install scrubbers during the period of uncertainty (Proposition

1). To test the �rst proposition, it does not make sense to estimate a DID model with a binary

irreversible decision as the outcome. Instead, I restrict the sample to only units that did not

already have a scrubber installed in 2004. I then estimate both linear probability and probit

models where the dependent variable is a binary variable, set equal to one if the unit installed

a scrubber by 2009, and set equal to zero otherwise.

4.1.3 Empirical Test of Proposition 4

�e fourth result from the analytic model predicts that we should see a relative increase in

scrubber investment at plants in Florida and Texas a�er the court ruled to enforce CAIR. To

test whether the relative probability that scrubbers were installed changed a�er the court’s

decision, I estimate the following model:

1[Scrubber]it = βτ1[Challenger]it · 1[yearτ ]t + λτ1[CAIR]it · 1[yearτ ]t + x′iη + γt + εit,

(5)

where 1[Scrubber] is an indicator variable, set equal to one if unit i has a scrubber installed

in year t and zero otherwise, and 1[yearτ ] is a year dummy that is set equal to one if the year

t is equal to τ . Again, x′i controls for the unit’s distance to the Powder River Basin, boiler age

in 2004, emission rate in 2004, and cost-of-service regulation status. I also drop each unit that

had already had a scrubber installed during the year t− 1. �is is to account for the fact that

only unscrubbed units are actually making an investment decision each year. Conditional on

not already having installed a scrubber, βτ is the average additional probability that units in

“challenger” states in a year τ install a scrubber, relative to units in the other “CAIR” states.

In order to examine outcomes a�er the court made the decision to include Florida and

Texas in CAIR, I expand the sample to include the years 2010 and 2011.
28

I also drop units

in Minnesota since I want to test if the probability of installing a scrubber went up a�er the

court ruled that the two states would have to comply.
29

Finding βτ is negative for years before

the court decision, and βτ is positive a�er the court decision, would support the theoretical

prediction that units that faced a lower probability of being regulated should be less likely to

invest in pollution controls in the period before the court decision but should be relatively

more likely to install a scrubber in the years following the decision.

28
In 2011, the EPA announced a replacement policy for CAIR called the Cross State Air Pollution Rule

(CSAPR), for that reason I do not consider any data beyond 2011 because any abatement choices beyond that

point are likely related to the new policy.

29
I also investigate abatement and investment trends for each state individually in the appendix. �ere were

only 9 units without scrubbers in MN a�er the court ruling and none installed scrubbers in 2010-2011.
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4.2 Propensity Score and Nearest-Neighbor Matching Estimators

A potential weakness of the DID estimator with a vector of linear controls is it implicitly

assumes the treatment e�ect must be homogeneous. �is assumption would be violated if

abatement choices are di�erent on average at plants with di�erent characteristics. Table 2

shows that units in “challenger” states were younger than other CAIR units, closer to the

Powder River Basin, and more likely to be subject to cost-of-service regulation. Previous work

by Cicala (2015) and Fowlie (2010) show plants operating under cost-of-service regulation

have been more likely to install capital-intensive technologies. �ere is also reason to believe

pollution controls are less likely to be installed on older units closer to retirement.

To relax the assumption of homogeneous treatment e�ects, I estimate a semi-parametric

di�erence-in-di�erences estimator in the spirit of Abadie (2005). For this analysis, units in

“challenger” states are the treated group and the pool of control units are all other coal units

subject to CAIR. �is estimator has two main steps. First, I �exibly estimate a propensity score

function. Secondly, I reweight the observations in the treatment and control groups using the

estimated propensity scores. I discuss the details regarding the propensity-score-weighting

estimator in Appendix B.

In addition to the propensity-score estimator, I also implement a nearest-neighbor-matching

estimator (Abadie & Imbens, 2006). Intuitively, this estimator matches treated units (units in

challenger states) with other observably simlar control units (other units that were subject to

CAIR). When contructing matches, I force units to be matched exactly on the binary “Regu-

lated” variable and then I choose nearest-neighbor matches using Mahalanobis distance metric

over the three continuous variables.
30

I also use the Abadie & Imbens (2006) bias correction to

adjust for inexact matches in the control group. �e nearest-neighbor estimate of the average

treatment e�ect on the treated group is:

ÂTT =
1

N1

∑
i∈Υ1

{(
Y (i, 2009)− Y (i, 2004)

)
−
∑
k∈Υ0

wik
(
Y (k, 2009)− Y (k, 2004)

)}
(6)

where Υ1 is the set of all units in the treatment group, N1 is the number of units in the

treatment group, and Υ0 includes all units in the control group. �e weight placed on unit k

when constructing the counterfactual estimate for treated facility i is wik.

5 Results

In this section, I present the primary empirical results and conduct a series of robustness

checks.

30
�e continous variables include the unit’s distance to the Powder River Basin, boiler age, and baseline

emission rate in 2004.
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5.1 E�ects of Policy Uncertainty on Emissions (Prop. 2)

Table 3 presents regression results from equation 4. �e primary outcome of interest is the

Log SO2 emission rate in pounds per unit of heat input. �e last four columns include year

�xed e�ects, Column 2 includes state �xed e�ects, and Column 3 and 4 include unit �xed

e�ects. In all speci�cations, standard errors are clustered at the unit level.
31

Table 3: Di�erence-in-Di�erence: Dep Var: Log SO2 (lbs. per MMBtu)

(1) (2) (3) (4)

Challenger (β1) 0.134
∗∗∗

0.134
∗∗∗

0.134
∗∗∗

0.132

(0.0371) (0.0373) (0.0371) (0.263)

CAIR (β2) -0.165
∗∗∗

-0.165
∗∗∗

-0.165
∗∗∗

-0.197

(0.0311) (0.0312) (0.0311) (0.218)

Controls Yes Yes No Yes

Year FE No Yes Yes Yes

State FE No Yes No No

Unit FE No No Yes No

Operator FE No No No Yes

Restricted Sample No No No Yes

N 5335 5335 5335 194

R2
0.579 0.624 0.721 0.577

Speci�cations without unit �xed e�ects also control for unit observable characteristics. For the �rst four

columns the sample includes all coal units that operated between 2002-2009 and did not have a scrubber in-

stalled by 2004. �e fourth column restricts the sample to only units that were run by operating companies that

ran plants in both “challenger” states and other states and include operating company �xed e�ects. All standard

errors are listed in parenthesis and are clustered at the unit level.
∗

indicates p < 0.10,
∗∗

indicates p < 0.05,

and
∗∗∗

indicates p < 0.01

In each of the �rst three speci�cations, CAIR (β2) is negative and statistically signi�cant

at the 1% level. �is means units in states that were scheduled to be part of the CAIR SO2 pro-

gram reduced emissions 16% more than units not scheduled to participate in the years before

the program began, 2005-2009. Units anticipating the lower emissions cap under CAIR had

an incentive to make early emission reductions because they could bank current allowances

to use and sell under the new program. On the other hand, Challenger (β1) is positive and

statistically signi�cant at the 1% level in each of the �rst four speci�cations. Units exposed

to increased policy uncertainty reduce their emission rates by less relative to other states

included in CAIR. �is is consistent with Proposition 2 from Section 3. Since there was in-

creased uncertainty as to whether units in these states would actually have to comply with

the new regulations, they had a higher option value to delay abatement that required sunk ir-

reversible investments. Additionally, we can compare emission reductions in the “challenger”

states relative to states never included in CAIR by summing the coe�cients Challenger (β1)

31
�e results are also robust to clustering at the plant level, operating-company level, state-year level, and

state level. See Table 11 in the appendix.

23



and CAIR (β2). For speci�cation 3, the sum of β1 and β2 is 0.03 and not statistically di�erent

from zero (p-value = 0.43). �erefore, there is li�le evidence that units in “challenger” states

made larger emission reductions than units that never anticipated regulation at all.

While these results are suggestive, they could be prone to several biases discussed in the

previous section. To account for the possibility that the legal challenge was endogenous, I

restrict the sample to only operating companies that run facilities in both “challenger” states

and other states. I then estimate equation 4 including operator company �xed e�ects. �e re-

sults of these regressions can be found in column 5 of Table 3. �e magnitude of the estimates

are only slightly changed, and the coe�cient signs are consistent with the baseline estimates.

However, the estimates have less power due to the much smaller sample size and CAIR (β2)

and Challenger (β1) are no longer statistically signi�cant.

Table 4 presents the results using the semi-parametric DID estimators of the average treat-

ment e�ect on the treated (ATT). Recall that the treated group includes all units in Texas, Min-

nesota, and Florida while the control group includes all other units included in CAIR. Panel A

shows the summary statistics for “challenger” plants and for the nearest-neighbor-matched

sample of CAIR units (1 match per unit). �e covariates are much more balanced than they

were with the full sample. Furthermore, I fail to reject a t-test of di�erence in means for

any of the matching variables. �e �rst column of Panel B presents the estimate using the

propensity-score-weighted estimator from equation 21. To obtain standard errors, I boot-

strap the entire two-step procedure of estimating the propensity score then calculating the

weighted sample average. Columns 2-4 report the estimated ATT using the nearest neighbor

matching estimator for one, three, and �ve matches respectively. I use the bias correction and

standard errors from Abadie & Imbens (2006). All the estimates are positive and signi�cant at

conventional levels. �e NN estimator appears to be robust to the number of matches chosen,

and the propensity-score-weighted estimator yields a similar estimate.

To alleviate any remaining concerns that the estimated emissions di�erences are driven by

other confounding factors, sample selection, or arbitrary modelling choices, I conduct several

additional robustness checks that are described in detail in Appendix C.

5.2 Mechanisms (Props. 1 & 3)

I now turn to look at the mechanisms driving the observed di�erences in pollution abatement.

�e �rst two columns of Table 5 contain the estimated e�ects with the scrubber installation

decision as the outcome variable. Units in CAIR states were more likely to install a scrubber

compared to units that were not regulated under CAIR. In addition, units in “challenger” states

were 20% less likely to install a scrubber in comparison to other CAIR states. �is provides

evidence in support of Proposition 1, that �rms with a lower probability of being regulated

should be less likely to make a sunk investment in pollution-control technologies.

Columns 3-5 present the estimated coe�cients for the DID model with log sulfur con-
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Table 4: Propensity-Score-Weighting and NN-Matching Estimates

Panel A: Summary Statistics for Matched Sample (1 Neighbor)

CAIR Challenger Di�erence in Means

Age (Years) 32.82 32.95 0.13

(10.10) (9.94) (1.81)

Log SO2 Rate 2004 -0.16 -0.18 0.02

(0.46) (0.47) (0.06)

Distance to PRB (Miles) 1630.21 1658.72 28.51

(528.38) (580.42) (93.26)

Regulated (0,1) 0.82 0.82 0

(0.39) (0.39) (0)

N 44 44

Panel B: Propensity-Score-Weighting and NN-Matching Estimates

(1) (2) (3) (4)

ATT 0.267
∗∗

0.486
∗∗∗

0.376
∗∗∗

0.356
∗∗∗

(0.106) (0.115) (0.106) (0.108)

N Treated 44 44 44 44

Model P-Score Weight NN Match NN Match NN Match

Num. Neighbors - 1 3 5

Panel A contains summary statistics for the “Challenger” units and the nearest neighbor matched control group.

Panel B presents estimates for the average treatment e�ect on the treated (ATT) where units located in TX, MN,

and FL are the treated group and all other units in CAIR are the control group. �e �rst columns provides the

ATT for the propensity-score-weighted estimator and the last three columns include nearest-neighbor-matching

estimates allowing for di�erent numbers of neighbors. All standard errors are listed in parenthesis.
∗

indicates

p < 0.10,
∗∗

indicates p < 0.05, and
∗∗∗

indicates p < 0.01

tent of coal purchases as the outcome variable. �e coe�cient on CAIR (β2) is not signif-

icant, meaning there is no evidence that plants in CAIR states reduced the sulfur content of

their coal purchases compared to non-CAIR states a�er the policy was announced. I do �nd

Challenger (β1) to be negative and signi�cant for the speci�cations in column 3, 4, and 5,

indicating plants in “challenger” states reduced the sulfur content of their fuel purchases by

about 5% more relative to other plants regulated under CAIR.

�e right panel of Figure 5 plots the average sulfur content of fuel purchases for CAIR-

regulated plants, non-CAIR plants, and plants in the “challenger” states. �e sulfur content

of coal for CAIR and non-CAIR plants remains relatively constant a�er the CAIR policy was

announced in 2005. However, sulfur content noticeably declines at plants located in the “chal-

lenger” states. Sulfur content increases again a�er uncertainty is resolved in late 2008. �is

is consistent with �rms increasing abatement through the higher-variable-cost option while

they delay investing in the high-�xed-cost option (installing a scrubber). As the probability

of a more stringent emission price decreases from one, �rms should be less likely to install a

scrubber. Although, they still had some incentive to reduce emissions by switching to lower-

sulfur fuels since permit prices increased a�er the announcement of CAIR.
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Figure 5: Scrubber and Sulfur Content Trends by Group

In both graphs, the �rst red vertical line indicates the initial announcement of CAIR. �e second vertical red

line represents the date the court made its �nal ruling.

5.3 Investment A�er the Court Ruling (Prop. 4)

In December 2008, the D.C. Circuit Court ruled that Florida and Texas would be required to

participate in the CAIR program but plants located in Minnesota would be excluded. If plants

were delaying investment to wait for the resolution of the uncertain policy, plants in Texas

and Florida should be more likely to have installed pollution controls in the years immediately

a�er the ruling, while plants in Minnesota would not. Minnesota only had 9 coal units without

pollution controls as of 2009 so it is di�cult to make strong inferences from their behavior;

Table 5: Decision to Install Scrubber, Sulfur Content of Coal

(1) (2) (3) (4) (5)

Scrubber Scrubber Log Sulfur Log Sulfur Log Sulfur

Challenger (β1) -0.199
∗∗∗

-0.844
∗∗∗

-0.0578
∗

-0.0574
∗∗

-0.0486
∗∗

(0.0478) (0.306) (0.0297) (0.0287) (0.0235)

CAIR (β2) 0.101
∗∗

0.538
∗∗

0.00526 0.00869 0.00434

(0.0401) (0.228) (0.0198) (0.0193) (0.0160)

Model OLS Probit OLS OLS OLS

Controls Yes Yes Yes Yes No

Year FE - - Yes Yes Yes

State FE - - No Yes No

Plant FE - - No No Yes

N Challenger 44 44 585 585 585

N 667 667 3351 3340 3834

R2
0.220 0.895 0.903 0.933

Scrubber installation regressions only include units that did not already have a scrubber installed as of 2004. �e

Scrubber regressions are cross sectional with the dependent variable equal to one if a scrubber was installed on

the unit by 2009. �erefore, these regressions do not include �xed e�ects. “Sulfur Content” regressions (columns

3-5) are run at the plant level. “N Challenger” is the number of observations in the “challenger” group. Standard

errors in parenthesis.
∗

indicates p < 0.10,
∗∗

indicates p < 0.05, and
∗∗∗

indicates p < 0.01.
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however, none of these units installed scrubbers in the years immediately following the court

ruling. To test if units in Texas and Florida were more likely to install pollution controls a�er

the �nal ruling, I estimate the model from equation 5. �is regression allows me to identify

how the relative probability of units installing a scrubber in Texas and Florida changed over

time.

Figure 6: Relative Probability of Installing a Scrubber by Year

Estimates of equation 5 are reported in Figure 6. βt can be interpreted as the average addi-

tional probability that units in Texas and Florida installed a scrubber in year t relative to other

units in CAIR. For the years 2007-2009, units in Texas and Florida were less likely to install

scrubbers relative to other CAIR states. A notable change occurs in 2010, β2010 is positive and

signi�cant, meaning units in Texas and Florida were more likely to install scrubbers relative

to other CAIR units. �is is plausibly due to the installations that occurred in response to the

court’s ruling. �e court made its �nal decision in December 2008 and scrubbers typically

take 12-24 months to install. If �rms decided to install pollution equipment in late 2008, these

decisions would be expected to be re�ected in the data around 2010. �e point estimate for

β2011 is also positive though not statistically signi�cant. �ese results provide evidence in

support of Proposition 4. Namely, �rms should be more likely to install a scrubber a�er the

uncertainty is resolved in the case that they have to comply with the more stringent emissions

cap regime.

Referring back to the right panel of Figure 5, we also see that plants in the “challenger”

states switched away from using lower-sulfur coal a�er the court announcement in late 2008.

�is indicates policy uncertainty was costly for �rms in these states. Many �rms made costly

purchases of low-sulfur coal during the period of uncertainty. If the �rms had known initially
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they would be included in CAIR, they could have avoided these coal purchases and additional

permit expenditures by immediately installing pollution controls. I discuss the costs of policy

uncertainty in more detail in Section 5.4.

5.4 Discussion: �e Costs of Policy Uncertainty

A comprehensive welfare analysis of the impact of policy uncertainty would account for both

changes compliance costs and pollution damages. Pollution damages vary signi�cantly across

space (Muller & Mendelsohn, 2009), therefore to measure changes in pollution damages, I

would need detailed estimates of how policy uncertainty shi�ed emissions across space. Un-

fortunately, the empirical estimates in the previous sections only provide insight about how

emissions changed on average in the “challenger” states relative to other CAIR states. Further-

more, I would also need to account for exactly how emissions shi�ed across time. Because I do

not have precise measures of �rm-level abatement costs and associated emissions damages, a

counterfactual simulation of permit market outcomes with and without the policy uncertainty

is beyond the scope of this paper.

In place of a comprehensive welfare analysis, I aim to quantify the additional compliance

costs incurred by plants in the “challenger” states as a result of policy uncertainty. �e court

ultimately ruled that Texas and Florida would have to comply with CAIR and many plants in

these states made investments in pollution controls between 2009-2011. �is suggests that pol-

icy uncertainty delayed investment in these states. If the legal challenge had never occurred,

plants could have installed pollution controls sooner and avoided buying costly emissions

permits during the period of uncertainty. On the other hand, the legal challenge likely led

to reductions in real investment costs for plants in Florida and Texas. �at is, these plants

bene�ted in net present value terms from delaying scrubber investment. In addition, plants

in Minnesota bene�ted from the legal challenge. Minnesota plants were less likely to make

a scrubber investment that they would later regret a�er the court excused the state from the

CAIR regulation. �erefore, to assess the total additional compliance cost that resulted from

the legal challenge, I add the change in real permit expenditures in challenger states to the

change in real capital costs as shown in Equation 7. It is important to note, this calculation is

an ex-post analysis of the cost of uncertainty and depends on the policy realization.

TotalCost = ∆PermitExpenditures+ ∆CapitalCosts (7)

To calculate the additional permit cost, ∆PermitExpenditures in Equation 7, I combine

the unit-level estimates of increased SO2 emission rates due to policy uncertainty from my

preferred speci�cation (β1 from equation 4) with unit-level heat-input data. �is provides

an estimate of increased pollution levels in the “challenger” states during the interim period

before the court made its �nal ruling. I then take this estimate and combine it with SO2
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allowance price data from 2005-2009.
32

A�er the announcement of CAIR in 2005, permit

prices immediately increased as �rms responded in anticipation of the stricter future cap.

Firms that chose to maintain �exibility and delay investing in pollution controls had to buy

more expensive permits in order to comply with the cap (or gave up the opportunity to sell

their permits at the higher price). Many of these units eventually did install pollution controls

a�er the court made the �nal ruling. If �rms had initially known their regulatory status, they

could have installed controls sooner and reduced permit expenditures. �e aggregate permit

costs from delayed abatement are:

∆PermitExpend. =
2009∑
t=2005

∑
i∈{TX∪FL}

(1+r)(2010−t) · ̂∆SO2rate·HeatInputit ·PermitPricet

(8)

where r is the discount rate and PermitPricet is the average SO2 allowance price at the

EPA annual auction in year t. I multiply the estimated increase in emission rate due to policy

uncertainty by the heat input for each unit i in year t and then multiply this by the permit

price in year t. I then sum over all the units in Texas and Florida and aggregate across all

years from 2005 to 2009. Annual permit expenditures are calculated in 2010 dollars assuming

a risk-free discount rate of 3.98%.
33

To assess how the legal challenge a�ected capital expenditures, ∆CapitalCosts in Equa-

tion 7, I separate the challenger plants into two groups. �e �rst group contains plants in

Texas and Florida, states where the challenge was overruled. �e second group contains plants

in Minnesota. Several plants in Texas and Florida did eventually invest in scrubbers a�er the

court made a ruling in 2008. �ese plants accrued a �nancial bene�t from delaying investment.

To calculate this bene�t, I �rst assume that each plant paid $319/KW of capacity to install a

scrubber, this is the average scrubber cost reported in Sharpe (2009). Second, I assume that

each plant that did install a scrubber would have installed the technology two years earlier in

the absence of the legal challenge. I assume a two-year di�erence because the average CAIR

plant installed a scrubber in 2008 while the average challenger plant waited until 2010. Under

these assumptions, the cost savings in 2010 for each unit i equals ScrubCosti − ScrubCosti
(1+r)2

where r is the discount rate (equal to 0.0398) and ScrubCosti = Capacityi ∗ 319. �e total

change in capital costs for plants in Texas and Florida is the sum of these cost savings across

all units that installed a�er 2008. Additionally, I calculate the cost savings for plants in Min-

nesota as ∆ProbInstall∗ScrubCosti where ∆ProbInstall is the reduction in the probability

that plants in Minnesota installed a scrubbed due the legal challenge. I use β1 from the �rst

column Table 5 as the estimate for the change in the probability of installing.

Calculating the expression in Equation 7, we see that policy uncertainty increased per-

32
Allowance price data were obtained from EIA and EPA, the price data are the market clearing prices from

the annual EPA allowance auction.

33
3.98% was the average rate for 10-Year U.S. Treasury bonds during this period.
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mit compliance costs by $216 million over �ve years in Texas and Florida. Since units in the

“challenger” states comprised a relatively small percentage of the overall market, the instal-

lation of several additional scrubbers would be unlikely to have a large e�ect on prices in the

nationwide allowance market. However, if installing scrubbers at several plants in Texas and

Florida pushed permit prices down, then the above calculation may overestimate actual cost

savings. On the other hand, any upward bias in the estimated costs would likely be o�set

by additional environmental and health bene�ts from these units installing pollution controls

sooner.
34

In contrast, many plants saved on capital expenses as a result of uncertainty about the

CAIR policy. Under the assumptions described above, I �nd that �rms in Texas and Florida

saved $1.1 million by delaying investment in scrubber technologies. Additionally, plants in

Minnesota also bene�ted from delaying investment in pollution controls because they were

eventually excluded from CAIR. I �nd that plants in Minnesota saved $91.9 million in capital

costs by delaying investment in pollution controls. �e net e�ect of policy uncertainty was

an increase in overall compliance costs of $123 million.

�e costs of policy uncertainty appear substantial, despite the small geographic area in-

cluded in the judicial review. �e EPA estimated that the annual compliance costs of the CAIR

SO2 program would be $1.8 billion.
35

�e increased compliance costs resulting from the legal

challenge would then be equivalent to increasing the nationwide cost of CAIR by 1.4% over

the �ve-year period or a 15% increase in compliance costs for plants in Florida and Texas.
36

Be-

cause the legal challenge only a�ected a small part of the SO2 permit market, this highlights

the potential importance of policy uncertainty. Other legal challenges o�en a�ect a much

larger geographic area. For instance, the Clean Power Plan lawsuit a�ects electric utilities in

all 50 states. policy uncertainty is likely to have even larger costs on a national or global scale.

�ese results suggest an o�en neglected cost of the policymaking process. Speci�cally,

if �rms face uncertainty regarding when and how a new policy will be implemented, this

can raise the overall cost of the policy. Before creating new rules, federal agencies prepare

cost-bene�t analyses to compare the merits of di�erent policy alternatives. Typically though,

these analyses only incorporate the explicit bene�ts and costs of a policy conditional on being

enacted but ignore that some policy alternatives may be more likely to be challenged in court

or scrapped by future administrations. Policymakers, politicians, and federal agencies could

potentially improve welfare outcomes by consciously weighing the uncertainty associated

with di�erent possible rules before announcing a notice of proposed rulemaking or when

34
Measuring the additional health costs that arose from increases in emissions is not straightforward. Al-

though the legal challenge increased emissions in the “challenger” states, these increases were partly o�set by

later decreases in emissions a�er the court ruling (since �rms still had to comply with the cap). Increased health

costs are therefore a result of spatial and temporal shi�s in emissions.

35
See Federal Register Vol. 70 (�ursday, May 12, 2005). �e EPA estimated that the average cost of each ton

of SO2 abated would be $500 and that the program would reduce emissions by 3.6 million tons in 2010.

36
�ese calculations are obtained by multiplying EPA’s predicted average cost of compliance by the required

emission reduction under CAIR.
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�nalizing policy speci�cs a�er comments from industry participants and the public.

6 Conclusion

In recent years, policy uncertainty has become more salient in many industries such as health-

care, transportation, energy, manufacturing, telecommunications, trade, �nance, and banking.

New regulations o�en require speci�c investments by �rms. From a �rm’s perspective, the

overall value of an investment depends mainly on if the new policy remains in place. �e-

oretical work has shown that policy uncertainty should cause �rms to delay making sunk

investments. Also, anecdotal evidence suggests that policy uncertainty can lead to increases

in pollution, lower industry pro�ts, and higher unemployment. However, li�le empirical ev-

idence has been provided to support these claims.

�is article provides some of the �rst empirical evidence that policy uncertainty can cause

�rms to delay investment and to alter the types of investments they choose. In the context of

the Clean Air Interstate Rule (CAIR), policy uncertainty delayed reductions of sulfur dioxide

emissions. In particular, �rms that faced more uncertainty were more likely to delay invest-

ment in capital infrastructure to reduce emissions. Furthermore, these �rms were more likely

to use abatement strategies that did not require substantial �xed costs. In order to maintain

�exibility, many �rms decided to purchase emissions allowances as a means of compliance. I

estimate that policy uncertainty increased �rms’ compliance costs by $123 million.

In order to address concerns about climate change, new regulations will need to be intro-

duced and existing policies will need to be updated in the energy sector and other industrial

sectors. In the United States, the EPA proposed the Clean Power Plan in 2014 as a potential

policy to reduce greenhouse gas emissions from the electricity sector. �e policy would re-

quire substantial investment in renewable and natural gas generation and the retirement of

many existing coal plants. However, the long-term implementation of U.S. climate policy re-

mains largely uncertain due to unknown future political conditions and unknown outcomes

of the judicial review process. We have seen that this political and legal uncertainty could

hinder the e�ectiveness of government policies that aim to spur investment in cleaner capital

infrastructure.
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Appendices

A Proofs of Propositions

To simply exposition, I assume without loss of generality that the the discount rate r = 0.

�e �rms’ problem in the �rst period can then be wri�en as:

min

a1,I1
P1 · (e− a1) + C(a1, I1) +K · I1 + E

[
min

a2,I2
{P2 · (e− a2) + C(a2, I2) +K · (I2 − I1)}

]
s.t. at ∈ [0, e], It ∈ {0, 1}, I2 ≥ I1

A.1 Proof of Proposition 1

Firms are di�erentiated by their costs of capital. Speci�cally, there are three groups of �rms:

(1) �rms that will install the capital technology in the �rst period, (2) �rms that will wait to

install the capital technology only if the high emissions price is realized, (3) �rms that will

never install the capital technology. �e third group will have the highest cost of capital and

regardless of ρ they will never install the technology. �erefore, the share of �rm’s adopting

the technology in the �rst period will be determined by the cuto� capital cost K∗1 that sepa-

rates the �rst and second groups. I will show that K∗1 is increasing in ρ and therefore the the

share of adopters in period one F (K∗1) will also be increasing in ρ.

�e expected net bene�ts from installing in period 1 are equal to: P1 ·aI1−C(aI1, 1)−K+

E[min

a2,I2
{P2 · a2 − C(a2, I2)}|I1 = 1].37

If the �rm installs the technology in period 1, it saves

on permit costs and abatement costs in period 1 and anticipates saving on permit costs and

abatement costs in period 2; however, it also must pay the capital cost K and the abatement

cost C(aI1, 1). If the �rm waits until period 2 and only installs the capital technology if the

stringent price is enacted, then its expected bene�t will be P1 · aN1 − C(aN1 , 0) + E[min

a2,I2
{P2 ·

a2 − C(a2, I2) +K · I2}|I1 = 0]. Firms should invest if:

P1 · aI1 − C(aI1, 1)−K + E[min

a2,I2
{P2 · a2 − C(a2, I2)}|I1 = 1]

≥ P1 · aN1 − C(aN1 , 0) + E[min

a2,I2
{P2 · a2 − C(a2, I2) +K · I2}|I1 = 0]

(9)

Let aIH2 be the optimal level of abatement in period 2, conditional on having installed the

capital technology (I2 = 1) and emission prices being high. Let aIL2 be the optimal abatement

level if permit prices are low and the �rm has installed the technology. Furthermore, let aNH2

and aNL2 be the optimal abatement levels for �rms who have not installed the technology for

the high and low emission price cases respectively. Expanding the expectations, we have:

37
Recall aI1 is the optimal �rst period abatement conditional on installing the capital technology, and aN1 is

the optimal �rst period abatement choice for �rms that do not install the technology.
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P1 · aI1 − C(aI1, 1)−K + ρ(PH
2 · aIH2 − C(aIH2 , 1))

+(1− ρ)(PL
2 · aIL2 − C(aIL2 , 1)) ≥ P1 · aN1 − C(aN1 , 0)

+ρ(PH
2 · aIH2 − C(aIH2 , 1)−K) + (1− ρ)(PL

2 · aNL2 − C(aNL2 , 0))

(10)

To understand the the right-hand side of the inequality, recall that �rms in the second group

will install the capital technology in the second period only if the high permit price is realized,

which will occur with probability ρ. �e cuto� cost K∗1 for investment in the �rst period is

determined by the capital cost at which a �rm would be indi�erent between investing and

waiting. Se�ing the right and le� hand sides of (10) equal to each other and solving for K we

obtain:

K∗1 =

(
P1 · aI1 − C(aI1, 1)

)
−
(
P1 · aN1 − C(aN1 , 0)

)
1− ρ

+
(
PL

2 · aIL2 − C(aIL2 , 1)
)
−
(
PL

2 · aNL2 − C(aNL2 , 0)
) (11)

di�erentiating (11) with respect to ρ we have:

dK∗1
dρ

=
P1

1− ρ

(daI1
dρ
− daN1

dρ

)
+

1

1− ρ

(
Ca(a

N
1 , 0)

daN1
dρ
− Ca(aI1, 1)

daI1
dρ

)
+

1

(1− ρ)2

(
[P1 · aI1 − C(aI1, 1)]− [P1 · aN1 − C(aN1 , 0)]

)
+ PL

2

(daIL2
dρ
− daNL2

dρ

)
+
(
Ca(a

NL
2 , 0)

daNL2

dρ
− Ca(aIL2 , 1)

daIL2
dρ

) (12)

Substituting in the equilibrium conditions, Ca(a1, I1) = P1 and Ca(a2, I2) = P2, and cancel-

ing terms we are le� with:

dK∗1
dρ

=
1

(1− ρ)2

(
[P1 · aI1 − C(aI1, 1)]− [P1 · aN1 − C(aN1 , 0)]

)
(13)

We know that the �rst term in brackets must be larger than the second term in brackets. To

see this, notice P1 ·aI1−C(aI1, 1) ≥ P1 ·aN1 −C(aN1 , 1) since aI1 is the optimal abatement choice

conditional on having I1 = 1 by de�nition. Additionally we know that P1 · aN1 −C(aN1 , 1) >

P1 · aN1 − C(aN1 , 0) which follows from the assumption that marginal cost of abatement is

lower once the capital technology is installed. �is means the term in the large parentheses

is positive, and since
1

(1−ρ)2
is positive this implies

dK∗
1

dρ
> 0. Finally, since the cumulative

distribution function F must be non-decreasing in its argument it follows that
dF (K∗

1 )

dρ
≥ 0

�
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A.2 Proof of Proposition 2

We will show that
de1
dρ

< 0. Total emissions is equal to the sum of emissions from �rms that

invest in the technology and emissions from those that do not:

e1 = M
(
F (K∗1)(e− aI1) + (1− F (K∗1))(e− aN1 )

)
(14)

We next di�erentiate with respect to ρ to obtain a comparative static:

de1
dρ

= M
[
f(K∗)

dK∗

dρ
((e− aI1)− (e− aN1 ))− F (K∗)

daI1
dρ
− (1− F (K∗))

daN1
dρ

]
(15)

where f is the probability density function of K . We know that the �rst term in the

brackets, f(K∗)dK
∗

dρ
((e − aI1) − (e − aN1 )), is negative since f is non-negative by de�nition,

dF (K∗
1 )

dρ
is positive as shown above, and ((e − aI1) − (e − aN1 )) is negative because �rms that

install the technology will have lower emissions. �e next two terms in the brackets are equal

to zero because
daI1
dρ

= 0 and
daN1
dρ

= 0, this can be shown by di�erentiating the �rst order

condition Ca(a1, I1) = P1 with respect to ρ. �erefore, since M is also non-negative, it must

be the case that
de1
dρ
≤ 0.

�

A.3 Proof of Proposition 3

Let aN
1 denote total abatement by �rms that do not adopt the technology in the �rst period,

aN
1 =

∑
i ai1 · 1(Ii1 = 0). Total abatement by non-adopters is equal to:

aN1 = M
(

(1− F (K∗1))(aN1 )
)

(16)

Di�erentiating with respect to ρ we have:

daN1
dρ

= M
[
−f(K∗1)

dK∗
1

dρ
(aN1 )︸ ︷︷ ︸

[1]

+ (1− F (K∗1))
daN1
dρ︸ ︷︷ ︸

[2]

]
(17)

As the probability of the high price regime increases, more �rms adopt the technology,

which works to reduce total abatement by non-adopters, this e�ect is labeled [1] in equation

17. �is term is negative since f(K∗1), aN1 are positive and
dK∗

1

dρ
is positive by proposition 1.

Since
daN1
dρ

= 0, the term labeled [2] in equation 17 equals zero. �erefore,
daN

1

dρ
≤ 0.

A.4 Proof of Proposition 4

De�ne K∗2 as the the cuto� capital cost that a �rm would be indi�erent to installing the tech-

nology in the second period, conditional on the high price regime occurring:
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K∗2 = (PH
2 · aIH2 − C(aIH2 , 1))− (PH

2 · aNH2 − C(aNH2 , 0)) (18)

Notice the cuto� does not depend on ρ since the uncertainty has already been resolved

at this point. �e number of �rms that adopt is the number of �rms that have capital costs

smaller than K∗2 but have capital costs larger than K∗1 (i.e., did not invest in the �rst period).

�is number of �rms can be expressed as:

M ∗max{0, (F (K∗2)− F (K∗1))} (19)

Let ρ̂ be de�ned such that K∗2 = K∗1(ρ̂). �en di�erentiating (19) we obtain:

d[M ∗max{0, (F (K∗2)− F (K∗1(ρ)))}]
dρ

=

0, if ρ > ρ̂

M(−f(K∗1)
dK∗

1

dρ
), if ρ < ρ̂

(20)

It follows from the proof of proposition 1 thatM(−f(K∗1)
dK∗

1

dρ
) < 0. �erefore, the number

of adopters in period 2 must increase as ρ decreases, conditional on the high price regime

occurring.

�
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B Propensity-Score Weighting Details

Let Y 0(i, t) represent the emission rate unit i would a�ain at time t in absence of treatment.

Similarly, let Y 1(i, t) represent the emission rate unit i would a�ain at time t if exposed to

the treatment. �e e�ect of the treatment on the outcome for unit i at time t is de�ned as

Y 1(i, t)−Y 0(i, t). Additionally, letD(i) be an indicator function determining if unit i receives

the treatment. Also de�neP (D = 1|X) as the propensity score, the probability a unit receives

treatment conditional on observed covariates. For this analysis, the treatment group will be all

units located in the “challenger” states and the control group will be all other units in CAIR.
38

I use the year 2004 emission rate as the pre-period observation and the 2009 emission rate as

the post-period observation. �e objective is to estimate the average treatment e�ect on the

treated group (ATT): E[Y 1(i, 2009)− Y 0(i, 2004)|D(i) = 1]. Estimation of the ATT requires

a weaker assumption on distribution of covariates than would be required to estimate the

population average treatment e�ect (ATE). For identi�cation, require that for all X, P (D =

1|X) < 1 , in addition to the unconfoundedness assumption.
39

Appendix D includes marginal

kernel density plots of the continuous covariates for each group which demonstrate that this

overlap condition is satis�ed. �erefore, the average treatment on the treated is given by:

ATT = E[Y 1(i, 2009)− Y 0(i, 2009)|D(i) = 1]

=

∫
E[Y 1(i, 2009)− Y 0(i, 2009)|X(i), D(i) = 1]dP (D = 1|X)

=

∫
E[ρo · (Y (i, 2009)− Y (i, 2004))|X(i)]dP (D = 1|X)

= E
[
ρ0 · (Y (i, 2009)− Y (i, 2004)) · P (D = 1|X)

P (D = 1)

]
= E

[
(Y (i, 2009)− Y (i, 2004))

P (D = 1)
· D − P (D = 1|X)

(1− P (D = 1|X))

]

where ρ0 = D−P (D=1|X)
P (D=1|X)(1−P (D=1|X))

(21)

�e third line follows from the unconfoundedness assumption, a�er controlling for observed

covariates, the treatment and control groups would have followed parallel paths absent the

intervention. �e estimator is the sample analog of the ��h line in (21). Intuitively, the estima-

tor is down weighting the distribution of Y (i, 2009)− Y (i, 2004) for the untreated group for

values of the covariates which are over-represented among the untreated and weighting-up

Y (i, 2009) − Y (i, 2004) for those values of the covariates under-represented among the un-

treated. I estimate the propensity score using a �exible logit model that includes interactions

of all the covariates and quadratic terms.

38
�e semi-parametric DID estimator only allows for one treatment group and one control group so I omit

units outside CAIR.

39
Estimation of the ATE requires the overlap condition: 0 < P (D = 1|X) < 1.
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C Robustness Checks

To address additional identi�cation concerns, I conduct several robustness checks. In Panel

A of Table 7 in Appendix D, I estimate the model, excluding 2009 from the sample to account

for the possibility that �rms reacted quickly to the court decision.
40

Dropping 2009 does not

cause any noticeable changes to the estimated e�ects. In Panel B of Table 7, I restrict the

sample to only units within 1000 miles of the centroid of Texas, Florida, or Minnesota. It is

possible that the variable “Distance to the Powder River Basin” is not su�ciently controlling

for coal purchasing opportunities. For example Florida and New Hampshire may be similar

distance to the Powder River Basin but may face signi�cantly di�erent opportunity cost of

buying low-sulfur coal. Restricting the sample to only nearby plants does not change the

direction or statistical signi�cance of the coe�cients of interest.

It is also possible that other political or legal factors are driving di�erences in pollution

abatement and not policy uncertainty. I a�empt to address some of these potential concerns

in Appendix D Table 8. For instance, during the time frame of this study, some power plants

were required to install pollution controls due to the New Source Review (NSR) lawsuits. It is

a priori possible that NSR requirements are driving results if many of these lawsuits occurred

in CAIR states. Panel A of Table 8 reports estimates of the baseline model on a restricted

sample that excludes any plant that was subject to NSR litigation related to SO2 emissions.

�e results are robust to the exclusion of these plants, which mitigates concerns that NSR

lawsuits are impacting the results.

Another potential concern is that other political or institutional factors impacted emis-

sion reductions. Panel B in Table 8 shows estimates of the baseline model from equation 4

but only including units in states that had a Republican governor in 2006 and choose PUC

chairmen by appointment. In 2006, Texas, Minnesota, and Florida all had Republican gov-

ernors and appointed PUC chairmen. �is restricted sample a�empts to deal with possible

confounding political factors that would make installing pollution controls more feasible in

some states. Since most states did not have both a Republican governor and an appointed PUC

commission,
41

75% of the observation are dropped. However, the point estimate is still posi-

tive, statistically signi�cant, and of similar magnitude. �is result suggests that the baseline

result is not being driven by confounding political factors.

An additional potential concern with the analysis is that the border states’ legal challenge

initially only challenged the inclusion of Texas plants that were located west of the north-

south I-35/I37 corridor. In the baseline analysis, I included all Texas units in the challenger

group because EPA almost always levies regulations for entire states to avoid in-state pollution

havens. As a robustness check, I have also run the baseline regressions with plants in East

40
2009 was a�er the court ruling so it is possible �rms could have reduced emissions a�er the ruling was

made. Scrubbers usually take over a year to install, and coal is usually purchased on one-year contracts so this

is unlikely but possible.

41
Many states elect PUC commissioners.
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Texas, discluded from the “Challenger” group. �e results are shown in Table 10 and the

results are robust to this change.

I also account for the possibility that �rms were changing electricity output as a method of

compliance. In particular, I estimate the model with total annual SO2 emissions in tons as the

dependent variable. I also estimate the baseline DID regression with the natural logarithm of

SO2 in tons as the dependent variable and also with the emission rate as the outcome variable.

�e results of all of these regressions are consistent with the baseline model and are presented

in Table 12 in the Appendix D.

Finally, I present estimates with alternative standard error clusters. In Table 11, I allow

for clustering at the unit level, plant level, state-year level, and state level. �ese alternative

clusters do not change the signi�cance of the estimated e�ects. In Table 9 also shows that the

results are robust to using the entire sample of coal units (including scrubbed units) and also

to using an unbalanced panel (including units that did not operate in each year of the sample).

D Tables and Figures

Figure 7: SO2 Allowance Price History

Source: Hitaj & Stocking (2016)
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Table 6: Di�-in-Di� : Acid Rain Program Phase 2 (2000)

Panel A: Log SO2 (lbs/MMBtu)

(1) (2) (3) (4)

Challenger -0.0541 -0.0541 -0.0541 -0.0541

(0.0666) (0.0666) (0.0671) (0.0768)

CAIR 0.0272 0.0272 0.0272 0.0272

(0.0393) (0.0393) (0.0396) (0.0453)

Controls Yes Yes Yes No

Year FE No Yes Yes Yes

State FE No No Yes No

Unit FE No No No Yes

N 2704 2704 2704 2704

r2 0.874 0.874 0.881 0.921

Panel B: Decision to Install Scrubber

(1) (2)

Challenger 0.00463 0.342

(0.0266) (0.359)

CAIR -0.0548
∗∗

-0.602
∗∗

(0.0218) (0.301)

Model OLS Probit

Controls Yes Yes

N Challenger 46 46

N 676 676

r2 0.0714

Panel A reports regressions results for a Di�-in-Di� regression with 1996-1999 as the pre-period and 2000-2001

as the post-period and SO2 emission rate as the dependent variable. For Panel A, standard errors are clustered

at the unit level. Panel B reports estimates for both OLS and Probit models where the dependent variable is a

binary decision to install a Scrubber by 2001, the sample includes all units that did not already have a scrubber

installed in 1996,
∗

indicates p < 0.10,
∗∗

indicates p < 0.05, and
∗∗∗

indicates p < 0.01
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Table 7: Robustness Checks - Di�-in-Di� with Sample Restrictions 1 - Dep Var: Log SO2 (lbs.

per MMBtu)

Panel A: Drop 2009

(1) (2) (3) (4)

Challenger 0.0930
∗∗∗

0.0930
∗∗∗

0.0930
∗∗∗

0.0930
∗∗∗

(0.0298) (0.0298) (0.0299) (0.0321)

CAIR -0.131
∗∗∗

-0.131
∗∗∗

-0.131
∗∗∗

-0.131
∗∗∗

(0.0257) (0.0257) (0.0258) (0.0277)

Controls Yes Yes Yes No

Year FE No Yes No Yes

State FE No No Yes No

Unit FE No No No Yes

N 4669 4669 4669 4669

r2 0.702 0.716 0.712 0.797

Panel B: Only Plants Near MN,FL,TX

(1) (2) (3) (4)

Challenger 0.113
∗∗∗

0.113
∗∗∗

0.113
∗∗∗

0.113
∗∗∗

(0.0404) (0.0405) (0.0405) (0.0432)

CAIR -0.197
∗∗∗

-0.198
∗∗∗

-0.197
∗∗∗

-0.198
∗∗∗

(0.0331) (0.0332) (0.0332) (0.0354)

Controls Yes Yes Yes No

Year FE No Yes No Yes

State FE No No Yes No

Unit FE No No No Yes

N 3327 3327 3327 3327

r2 0.510 0.538 0.528 0.668

Panel A reports regressions results for the baseline Di�-in-Di� regression from equation 4 excluding data from

2009. For this regression, the pre-period is 2002-2004 and 2005-2008 is the post-period. �e court made a ruling

in December 2008, so it is possible that �rms could react to the announcement by reducing emissions in 2009.

Panel B estimates the baseline model from equation 4 but excluding all units that are located further than 1000

miles from the centroid of TX, MN, or FL. All standard errors are clustered at the unit level,
∗

indicates p < 0.10,

∗∗
indicates p < 0.05, and

∗∗∗
indicates p < 0.01
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Table 8: Robustness Checks - Di�-in-Di� with Sample Restrictions 2 - Dep Var: Log SO2 (lbs.

per MMBtu)

Panel A: Drop Units Subject to NSR Lawsuits

(1) (2) (3) (4)

Challenger 0.107
∗∗∗

0.107
∗∗∗

0.107
∗∗∗

0.107
∗∗∗

(0.0369) (0.0370) (0.0371) (0.0395)

CAIR -0.138
∗∗∗

-0.138
∗∗∗

-0.138
∗∗∗

-0.138
∗∗∗

(0.0308) (0.0309) (0.0310) (0.0330)

Controls Yes Yes Yes No

Year FE No Yes No Yes

State FE No No Yes No

Unit FE No No No Yes

N 5007 5007 5007 5007

r2 0.609 0.633 0.629 0.741

Panel B: Only Units in States with Republican Appointed PUC Chairmen

(1) (2) (3) (4)

Challenger 0.155
∗∗

0.155
∗∗

0.155
∗

0.155
∗

(0.0785) (0.0787) (0.0787) (0.0839)

CAIR -0.223
∗∗∗

-0.223
∗∗∗

-0.223
∗∗∗

-0.223
∗∗

(0.0829) (0.0831) (0.0831) (0.0886)

Controls Yes Yes Yes No

Year FE No Yes No Yes

State FE No No Yes No

Unit FE No No No Yes

N 1376 1376 1376 1376

r2 0.578 0.601 0.588 0.709

Panel A reports regressions results for the baseline Di�-in-Di� regression from equation 4 excluding any unit

that were subject to New Source Review litigation related to SO2 emissions. During the time frame of this study,

some power plants were required to install pollution controls due to NSR regulations, all of these plants are

excluded from the sample. I thank Ian Lange for supplying NSR information. Panel B estimates the baseline

model from equation 4 but only including units in states that had a Republican governor in 2006 and choose

PUC chairmen by appointment. In 2006, TX, MN, and FL all had Republican governors and appointed PUC

chairmen. �is restricted sample a�empts to deal with possible confounding political factors that would make

installing pollution controls more feasible in some states. All standard errors are clustered at the unit level.
∗

indicates p < 0.10,
∗∗

indicates p < 0.05, and
∗∗∗

indicates p < 0.01
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Table 9: Robustness Checks 3 - Di�-in-Di� with Sample Changes - Dep Var: Log SO2 (lbs. per

MMBtu)

Panel A: Unbalanced Panel

(1) (2) (3) (4)

Challenger 0.142
∗∗∗

0.138
∗∗∗

0.141
∗∗∗

0.127
∗∗∗

(0.0321) (0.0317) (0.0326) (0.0334)

CAIR -0.130
∗∗∗

-0.131
∗∗∗

-0.122
∗∗∗

-0.113
∗∗

(0.0361) (0.0364) (0.0409) (0.0459)

Controls Yes Yes Yes No

Year FE No Yes No Yes

State FE No No Yes No

Unit FE No No No Yes

N 6329 6329 6329 6464

r2 0.603 0.623 0.618 0.757

Panel B: All Units (Including Scrubbed)

(1) (2) (3) (4)

Challenger 0.104
∗∗∗

0.103
∗∗∗

0.103
∗∗∗

0.0959
∗∗∗

(0.0319) (0.0317) (0.0319) (0.0338)

CAIR -0.0558
∗

-0.0568
∗

-0.0539 -0.0457

(0.0326) (0.0328) (0.0333) (0.0379)

Controls Yes Yes Yes No

Year FE No Yes No Yes

State FE No No Yes No

Unit FE No No No Yes

N 8096 8096 8096 8278

r2 0.789 0.798 0.795 0.865

Panel A reports regressions results for the baseline Di�-in-Di� regression from equation 4 but includes all units

even units that were not operating in each time period throughout the sample. Panel B reports regressions

results for the Di�-in-Di� regression from equation 4 but includes the full population of coal units including

units that already had scrubbers installed before 2005.
∗

indicates p < 0.10,
∗∗

indicates p < 0.05, and
∗∗∗

indicates p < 0.01
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Table 10: Robustness Check - Disclude East Texas Plants from Challenger Group

(1) (2) (3) (4)

Challenger 0.134
∗∗∗

0.134
∗∗∗

0.134
∗∗∗

0.134
∗∗∗

(0.0371) (0.0371) (0.0372) (0.0397)

CAIR -0.165
∗∗∗

-0.165
∗∗∗

-0.165
∗∗∗

-0.165
∗∗∗

(0.0311) (0.0311) (0.0312) (0.0332)

Controls Yes Yes Yes No

Year FE No Yes No Yes

State FE No No Yes No

Unit FE No No No Yes

N 5335 5335 5335 5335

r2 0.579 0.606 0.596 0.721

�is table reports regressions results for the Di�-in-Di� regression from equation 4 but but does not include

plants in East Texas in the Challenger Group.
∗

indicates p < 0.10,
∗∗

indicates p < 0.05, and
∗∗∗

indicates

p < 0.01

Table 11: Alternative Std. Error Clusters: DiD Dep Var: Log SO2 (lbs. per MMBtu)

(1) (2) (3) (4)

Challenger 0.134
∗∗∗

0.134
∗∗∗

0.134
∗∗∗

0.134
∗∗∗

(0.0397) (0.0514) (0.0431) (0.0455)

CAIR -0.165
∗∗∗

-0.165
∗∗∗

-0.165
∗∗∗

-0.165
∗∗∗

(0.0332) (0.0467) (0.0364) (0.0519)

Year FE Yes Yes Yes Yes

Unit FE Yes Yes Yes Yes

SE Cluster Unit Plant State-Year State

N 5335 5335 5335 5335

r2 0.721 0.721 0.721 0.721

�is table reports regressions results for the baseline Di�-in-Di� regression from equation 4 allowing for alter-

native standard error clustering by Unit, Plant, State-Year, and State.
∗

indicates p < 0.10,
∗∗

indicates p < 0.05,

and
∗∗∗

indicates p < 0.01
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Table 12: Robustness Checks - Alternative Dependent Variables

Panel A: Levels SO2 (tons)

(1) (2) (3) (4)

Challenger 755.9
∗

759.4
∗

771.6
∗

677.4

(437.9) (437.4) (433.8) (500.2)

CAIR -1808.5
∗∗∗

-1810.4
∗∗∗

-1812.5
∗∗∗

-1787.9
∗∗∗

(246.4) (246.5) (246.1) (271.7)

Controls Yes Yes Yes No

Year FE No Yes No Yes

State FE No No Yes No

Unit FE No No No Yes

N 5335 5335 5335 5335

r2 0.798 0.812 0.804 0.869

Panel B: Log(SO2 (tons))

(1) (2) (3) (4)

Challenger 0.134
∗∗∗

0.134
∗∗∗

0.134
∗∗∗

0.131
∗∗

(0.0371) (0.0371) (0.0372) (0.0620)

CAIR -0.169
∗∗∗

-0.169
∗∗∗

-0.169
∗∗∗

-0.239
∗∗∗

(0.0311) (0.0311) (0.0312) (0.0357)

Controls Yes Yes Yes No

Year FE No Yes No Yes

State FE No No Yes No

Unit FE No No No Yes

N 5335 5335 5335 5335

r2 0.826 0.837 0.833 0.829

Panel C: SO2 (lbs/MMBtu)

(1) (2) (3) (4)

Challenger 0.133
∗∗∗

0.133
∗∗∗

0.133
∗∗∗

0.133
∗∗∗

(0.0309) (0.0309) (0.0310) (0.0330)

CAIR -0.165
∗∗∗

-0.166
∗∗∗

-0.165
∗∗∗

-0.166
∗∗∗

(0.0258) (0.0258) (0.0258) (0.0275)

Controls Yes Yes Yes No

Year FE No Yes No Yes

State FE No No Yes No

Unit FE No No No Yes

N 5335 5335 5335 5335

r2 0.799 0.808 0.808 0.874

�is table reports regressions results for the baseline Di�-in-Di� regression from equation 4 with alternative

dependent variables. Panel A uses the level of emissions, SO2 in tons, Panel B uses the natural logarithm of SO2

in tons as the outcome variable, and Panel C uses the emission rate of SO2 in lbs/MMBtu. All standard errors

are clustered at the unit level.
∗

indicates p < 0.10,
∗∗

indicates p < 0.05, and
∗∗∗

indicates p < 0.01
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Figure 8: Marginal Kernel Density Plots for Observed Covariates
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