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Abstract

We examine technology adoption and consumer welfare disparities across demographic
groups using data from an online solar photovoltaic (PV) marketplace. First, we show that
conditional on visiting the online platform, low-income, Black, and Hispanic households
are relatively less likely to adopt solar. Moreover, we estimate high-income households’
expected consumer surplus ($1,755) is more than double that of low-income households
($824). Similarly, White and Asian Households obtain substantially higher consumer sur-
plus than Black and Hispanic households. While some of these welfare di�erences can be
a�ributed to varied willingness to pay across demographics, a signi�cant portion is due to
supply-side dynamics. In particular, low-income and Black households face higher prices
and receive fewer bids from installers. If bid prices submi�ed to low-income households
decreased by $0.81 per wa�–approximately 38%—then low-income households would ob-
tain the same expected consumer surplus as high-income households.
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1 Introduction

Over the past decade, policymakers have earmarked billions of dollars in subsidies for electric
vehicles, solar photovoltaic (PV) panels, and energy e�ciency retro�ts to encourage clean en-
ergy investments. �ese policies have accelerated adoption of these emerging technologies.
However, many of these programs, such as U.S. clean energy tax credits, disproportionately
bene�t higher-income households (Borenstein and Davis, 2016). �is is because Black, His-
panic, and low-income households are less likely to adopt clean energy technologies, such
as roo�op solar PV systems (Sunter et al., 2019; O’Shaughnessy et al., 2021; Reames, 2020).1

Consequently, the U.S. Environmental Protection Agency (EPA) recently launched a $7 bil-
lion “Solar for All” grant competition to increase access to a�ordable solar energy for low-
income households (Environmental Protection Agency, 2023). Furthermore, the U.S. In�a-
tion Reduction Act (IRA) formulated a provision for low- and middle-income individuals—the
LMI adder—to provide supplementary renewable energy tax credits (Internal Revenue Service,
2023).2 �ese programs underscore a rising emphasis on mitigating distributional inequities
in clean energy investment (Reames, 2019).

A distinctive feature of many markets for new energy technologies—such as home energy
e�ciency retro�ts, residential ba�ery storage, and roo�op solar PV—is that contractors cus-
tomize and price projects on an individualized basis. When services are quoted on a case-by-
case basis, sellers possess considerable leeway in whether to serve a customer and how much
to charge if they do. Inherent in these se�ings, is the possibility that sellers use household
or neighborhood characteristics—such as income, race, or ethnicity—to determine which cus-
tomers to serve or to adjust bid prices. �us, technology adoption disparities may derive from
supply-side and demand-side factors. On the demand side, di�erent consumer groups may
purchase a new technology at varying rates because of di�erences in willingness to pay or
other underlying preferences. On the supply side, �rms can contribute to disparities in equi-
librium adoption by changing their service o�erings or bidding behavior across consumer
demographic groups. �erefore, a key component of our study is disentangling the relative
importance of supply-side and demand-side factors in explaining technology adoption and
welfare disparities.

In Figure 1, we present a stylized example demonstrating how supply-side and demand-side
factors can contribute to disparities in clean technology adoption and consumer welfare. Fig-
ure 1a and Figure 1b depict the demand and supply for roo�op solar PV systems among high-
income and low-income households, respectively. We see that low-income households have

1In addition, Lyubich (2020) and Bednar and Reames (2020) show that low-income and minority households
pay relatively more for electricity and are more likely to be burdened by energy costs.

2�e proposed LMI adder o�ers low- and middle-income households with tax credits ranging between 10 to
20 percent of the purchase price of a solar PV system in addition to the 30% Investment Tax Credit (ITC) already
available for residential solar.
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more elastic demand and also face higher prices. In practice, low-income households may
face higher prices for many reasons. For example, low-income households tend to purchase
smaller solar arrays (with higher marginal costs), and they live, on average, further away from
solar installers.3

Unsurprisingly, Figure 1a and Figure 1b demonstrate that high-income households purchase
more solar PV systems and receive greater consumer surplus compared to their lower-income
neighbors. Figure 1c illustrates the di�erence in consumer surplus achieved by high-income
households relative to low-income households, which we call the consumer surplus gap.

Figure 1: Consumer Surplus for High- and Low-Income Households in the Solar PV Market
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Notes: Panel (a) shows the demand and supply curves of a high-income household. �e shaded area represents the
consumer surplus. �e shaded area in Panel (b) shows the consumer surplus obtained by low-income households.
Panel (c) shows the di�erence in consumer surplus between the two groups. Finally, Panel (d) decomposes this
di�erence into three components - a demand component, a supply component, and an interaction component.

3Solar PV installations o�en feature economies-of-scale where the per-unit cost of an installation tends to
decline with the size of the system (Dorsey, 2022).
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To reduce distributional inequities, a thorough evaluation of consumer surplus disparities is
critical for cra�ing e�ective policies. For example, consider a naı̈ve subsidy o�ered to low-
income households equal to SLow − SHigh in Figure 1. Such a subsidy would equalize e�ec-
tive solar prices across income groups. However, Figure 1 indicates that price equalization
alone is insu�cient to achieve parity in adoption and consumer welfare. When low-income
households’ demand is relatively elastic, equilibrium adoption and consumer surplus for low-
income households will lag behind high-income households, even with equal prices. In such
cases, more ambitious targeted subsidies would be needed if policymakers seek to eliminate
the consumer surplus gap.

Figure 1d further decomposes the consumer surplus gap into three components: a demand
component, a supply component, and an interaction component. �e demand component repre-
sents the portion of the consumer surplus gap that would persist if both income groups faced
the same supply curve (the low-income supply curve). �e supply component signi�es the
part of the consumer surplus gap that would remain if both groups had the same demand (the
low-income demand curve) but faced di�erent supply curves. Lastly, the interaction compo-
nent depicts the residual piece of the consumer surplus gap arising from simultaneous supply
and demand curve shi�s.

Understanding the underlying components of consumer surplus disparities can help inform
the choice of policy instruments used to address inequities. If the supply component primarily
explains disparities, policies that incentivize �rm investment or remove barriers to entry in
underserved markets may be fruitful. Examples of supply-side programs include grants, loans,
tax abatement, reducing regulatory or permi�ing costs, workforce development, and other
initiatives designed to reduce �rms’ investment costs and e�ectively increase supply. If the
demand component primarily drives the consumer surplus gap, then demand-side policies
may be relatively appealing. Such policies include Pigouvian taxes, product-market subsidies,
or behavioral nudges (e.g., information provision, reminders, social comparisons, or default
options).

In this paper, we investigate socioeconomic and demographic disparities in the residential
solar PV market using detailed data on contractors’ bids from a major online marketplace.
While there is growing evidence of income and racial disparities in adopting clean energy
technologies, relatively li�le research documents the fundamental mechanisms contributing
to observed adoption inequities. Our paper aims to �ll this gap and make several contributions
to the related literature: (1) use new data to quantify the gap in solar PV adoption across
household income and racial/ethnic demographics, (2) develop a structural model to estimate
disparities in consumer welfare in the solar PV market, (3) use our model to decompose the
mechanisms that explain the measured disparities in consumer welfare, and (4) evaluate the
welfare impacts of o�ering targeted price discounts to disadvantaged groups.
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To analyze distributional outcomes in the solar PV market, we collect data from the Ener-
gySage online platform. �is platform serves as an intermediary between solar PV buyers
and installers. In particular, solar PV shoppers can solicit bids from solar installers by up-
loading information about their name, monthly household energy usage, and home address
through the website. �e platform provides installers with information about each buyer’s
project, and then installers decide whether or not to submit a bid on each project. Bidding
installers can customize their quote for each unique project by adjusting the price or quality
of the chosen hardware components for each bid. Consequently, sellers may bid di�erently
based on their perceptions of a buyer’s income, race, or ethnicity. An advantage of using the
platform data is that we can observe how each seller’s bidding decisions—both the participa-
tion choice and quoted price—change across households. A key innovation in these data is our
ability to observe all bid o�ers made to households–not just successful transactions—allowing
us to account for the bidding behavior of sellers, explicitly. �is is especially valuable con-
sidering that most other solar PV data sets only record transactions and do not include any
information on households who ultimately decide not to adopt the technology.

We begin with a descriptive analysis documenting that solar PV purchase rates are indeed
lower for low-income and minority households in our data. For instance, the platform pur-
chase rate is 18% lower for Black households compared to White or Asian and Paci�c Islander
(API) households, and this same gap is nearly 30% for Hispanic households.4 Moreover, low-
income households are 25% less likely to purchase a solar PV system through the platform
than high-income households.5

We further show that minority and low-income households obtain relatively fewer bids and
higher (per-unit) bid prices. For example, compared to high-income White households, a low-
income, Black household receives about 17% fewer bids and 5% higher prices. On the other
hand, Hispanic households with similar income to White households do not face this same
barrier–they receive a similar number of bids and prices comparable to White households.
�is underscores the considerable heterogeneity in e�ects across socioeconomic and demo-
graphic groups.

Given that bids are determined by the equilibrium behavior of both sellers and buyers, it is
not clear whether disparities in the number of bids obtained across households are driven
by supply-side fundamentals (e.g. variation in installation costs or sellers’ preferences) or
demand-side fundamentals (e.g. heterogeneity in buyers’ willingness-to-pay). Namely, dis-
parities in the number of bids obtained across households may arise even if installation costs
were constant across households and the sellers were unbiased with respect to buyers’ de-

4�e platform close rate does not account for the possibility that adoption that occurs o�ine. We also show
a similar adoption gap arises if we compare responses a buyer exit surveys that ask whether the households
decided to install solar (including o�-line purchases).

5We de�ne low-income households as those having a census-block group median income within the bo�om
quintile of our sample, and high income as households in the top quintile.
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mographic characteristics. If sellers with market power know that a group of buyers is more
price-sensitive, they may bid less frequently to those buyers simply because bidding to them is
less pro�table. On the other hand, supply-side fundamentals could cause disparities in bidding
participation or pricing if heterogeneity in installation costs exists across groups. Variation
in costs could exist due to di�erences in travel, materials, labor costs, or other “implicit” costs
across installation projects. Implicit costs could arise if, for example, sellers possess prefer-
ences over whether to serve speci�c households or neighborhoods—either because of intol-
erant views or due to crime rates or other variables correlated with household demographic
characteristics.

We develop and estimate a structural model of the solar installation market to evaluate the
welfare consequences and mechanisms explaining the aforementioned disparities in solar PV
adoption. In the model, prospective solar PV buyers arrive at the platform, and then potential
sellers learn about the project’s characteristics—the location of the home seeking the solar in-
stallation, the household’s monthly electricity use, and other household demographics, such
as race and income. Bidding sellers learn their marginal cost of installing the solar system
for that particular household and then submit a price bid to maximize expected pro�ts. An
optimal bid is a function of the installer’s marginal cost, the household’s price elasticity, and
expectations about the number of competing bids for that project. A�er the sellers submit
their bids, the household chooses one of the bidding sellers or the outside option—choosing
an o�-platform installer or not installing a solar system at all. �e auction allocation mecha-
nism is a multi-a�ribute (beauty contest) auction in which buyers can consider factors other
than prices, such as the installers’ ratings, experience, and hardware quality. We use a simi-
lar estimation approach to Yoganarasimhan (2015), Krasnokutskaya et al. (2019), and Dorsey
(2022) to estimate the model.

�e structural model allows us to address several of our main research questions. First, the
model allows us to quantify the disparities in expected consumer surplus across socioeco-
nomic and demographic groups—such as the Black-White consumer surplus gap. Each buyer’s
expected consumer surplus is equal to their willingness to pay for the full set of installation
bids that they receive through the platform. Consequently, consumer surplus will generally
increase with the number of bids received, decrease with bid prices, increase with the quality
of sellers making bids, and decrease with the buyer’s price sensitivity. �e model estimates
reveal substantial disparities in consumer welfare. For instance, low-income households re-
ceive over 50% lower consumer surplus than high-income households. Similarly, White and
Asian households obtain over double the expected consumer surplus of Black and Hispanic
households.

Having estimated sizable disparities in consumer welfare, we build on and adapt methods
from the labor economics literature (Oaxaca, 1973; Blinder, 1973) to empirically decompose
the consumer surplus gap between two groups (e.g., the Black-White consumer surplus gap).
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Our decomposition approach separates the consumer surplus gap into the three components
illustrated in Figure 1d—a demand component, a supply component, and an interaction com-
ponent. Intuitively, the demand component is measured by evaluating the counterfactual level
of consumer surplus for each demographic group, holding the choice set available to each
group of buyers �xed. �e supply component measures the portion of the consumer surplus
gap due to di�erences in the choice sets available to the two groups of buyers—including dif-
ferences in the number of bids received or the distribution of bid prices. More concretely, we
derive the supply component by evaluating a set of counterfactuals allowing the choice sets to
vary across the two groups while holding the buyers’ price sensitivity �xed. Finally, the inter-
action component is the remaining portion of the consumer surplus gap not accounted for by
the demand and supply components. To our knowledge, we are the �rst paper to decompose
consumer welfare disparities using this approach.6

We �rst decompose the consumer surplus disparity between low-income and high-income
households. Low-income households are signi�cantly more price sensitive than high-income
households and tend to receive fewer bids from installers. Our decomposition shows that 43%
($405) of the consumer surplus gap between the groups is explained by the supply component,
the demand component explains 37% ($340), and 20% ($186) is explained by the interaction
component. We next decompose the consumer surplus gap between race and ethnic groups.
�e average Black household that arrives on the platform obtains a $1,010 lower expected con-
sumer surplus than the average White household. Although Black households are substan-
tially more price elastic than White households, we �nd that only 18% ($187) of the consumer
surplus gap between White and Black households can be explained by di�erences in demand
alone. In contrast, 56% ($568) of the gap arises because White households obtain preferable
choice sets with more bids, lower prices, and be�er quality installers. Hispanic households
also obtain $796 less surplus than White households. However, Hispanic households typi-
cally have choice sets that look comparable to White households, and therefore we �nd that
68% of the gap in consumer surplus between Hispanic and White households is explained by
di�erences in price sensitivity.

Targeted subsidies or tax credits have recently emerged as a popular policy tool for addressing
distributional disparities in solar PV and related markets. Our last set of results investigates
the e�ect of targeted price discounts in mitigating consumer surplus disparities. Our analysis
reveals that households in the lowest income quintile would need to be o�ered relatively large
price discounts to achieve the same expected consumer surplus as households in the highest
income quintile. In particular, we �nd that observed bid prices (a�er existing tax incentives)
submi�ed to low-income households would have to fall by 38%—$0.81 per wa�—to achieve

6While the intuition and motivation for our approach are similar to the seminal Oaxaca-Blinder decomposi-
tion used to measure discrimination in the labor market, the implementation di�ers because the counterfactual
outcomes in our se�ing are determined using a non-linear random utility model instead of an OLS regression.
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parity in consumer surplus with their high-income counterparts.

Overall, our results underscore large distributional di�erences in adoption and welfare among
our sample of solar PV buyers. Moreover, we �nd that these disparities are a�ributed to a com-
bination of heterogeneous preferences and fundamental di�erences in supply across house-
holds. In the short run, low-income households would require substantial price discounts to
reach the level of consumer surplus obtained by their higher-income counterparts. While we
do not explicitly investigate supply-side policies, our decomposition analysis suggests that
supply-side policies that reduce �rms’ costs of entry in underserved and disadvantaged com-
munities may be complementary to consumer subsidies in reducing disparities in adoption
and consumer welfare.7

Our paper relates to a broader theoretical literature on discrimination and inequality begin-
ning with Becker (1971) and followed by Arrow (1971), Phelps (1972) and Aigner and Cain
(1977). More recently, a breadth of empirical evidence indicates disparities in market out-
comes among minority and low-income individuals. A recent report by Brouille�e et al. (2021)
estimates that Black households obtain 43% of the welfare of White households in the United
States.

In addition, a wide and varied literature documents discrimination in the labor market.8 In
one in�uential paper that applies to our se�ing, Bertrand and Mullainathan (2004) provide
evidence that �rms discriminate against individuals based on their name in remote interac-
tions. In particular, the authors experimentally demonstrate resumes submi�ed with Black-
sounding names receive fewer job interview call-backs than identical resumes with white-
sounding names (e.g., Lakisha Washington versus Emily Walsh or Jamal Jones versus Greg
Baker). More recent research corroborates this channel in the labor market (e.g., Kline and
Walters (2020); Jacquemet and Yannelis (2012)) and suggests this same mechanism also im-
pacts access to housing (Diamond et al., 2019; Christensen and Timmins, 2018; Ewens et al.,
2014; Hanson and Hawley, 2011) and transportation (Ge et al., 2016). We contribute to this
literature by documenting whether �rms’ prices and bidding behavior vary across race and
socioeconomic groups in an online solar PV marketplace.

Particularly relevant to this paper is a suite of research documenting discrimination against
minorities in terms of price and access in online markets such as Airbnb (Edelman et al.,
2017), eBay (Ayres et al., 2015), ridesharing (Ge et al., 2016), and peer-to-peer lending (Pope
and Sydnor, 2011). Outside the online domain, researchers document that low-income indi-
viduals and minorities, especially Black individuals, pay more for goods and services in many
sectors including electricity (Lyubich, 2020), groceries (Bu�ers et al., 2022), vehicles (Ayres

7In the longer run, supply and demand-side policies may be complementary. For example, Gerarden (2023)
shows that demand-side subsidies encouraged upstream investment on the supply side of the solar industry.

8See Darity and Mason (1998); Altonji and Blank (1999); Rodgers (2006); Guryan and Charles (2013); Bertrand
and Du�o (2016) and Neumark (2018) for relatively recent reviews of this literature.
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and Siegelman, 1995), and housing (Hanson et al., 2016; Avenancio-Leon and Howard, 2019;
Bayer et al., 2016, 2018; Christensen and Timmins, 2018).

Lastly, our work contributes to a growing literature documenting the distributional conse-
quences of energy policy, environmental policy, and the clean energy transition. Existing
work has investigated the distributional impacts of carbon pricing (Mankiw, 2009; Metcalf,
2009; Grainger and Kolstad, 2010), fossil fuel extraction dynamics (Blonz et al., 2023), re-
newable energy policy (Reguant, 2019), and residential energy subsidies (Hahn and Metcalfe,
2021). Several previous papers have studied distributional issues in the residential solar mar-
ket. For example, Nemet et al. (2017), Barbose and Darghouth (2023), and O’Shaughnessy et
al. (2021) all document considerable pricing variation in solar installations, whereas Dauwal-
ter and Harris (2023) document the distribution of environmental bene�ts from roo�op solar
adoption. We build on this literature by estimating a model to evaluate the distribution of
welfare in this market and to understand the underlying mechanisms that drive distributional
disparities.

�is paper proceeds as follows. In Sections 2 and 3, we introduce our data and provide sum-
mary statistics and descriptive analysis. We introduce our model and estimation strategy in
Sections 4 and 5, and discuss the results of our model in Section 6. We conclude with conclu-
sions and recommendations for policy in Section 7.

2 Data

�e primary data for our analysis comes from the EnergySage online marketplace. We aug-
ment the EnergySage data with household characteristics and rich demographic data from the
American Community Survey to investigate ethnic, racial and income disparities in bidding
behavior and roo�op solar adoption.

2.1 Solar Auction Data

�e auction data we use in this research contains a set of bid prices and consumer purchase
choices for solar auctions on the EnergySage platform. Our main data set includes the bids
to all households within the platform’s 15 largest markets from 2017-2020—which includes
243,120 individual bids submi�ed to 56,011 potential buyers through the platform.9

EnergySage Inc. runs a quote aggregation platform that facilitates connections between po-
tential solar customers and a network of solar PV installers. More speci�cally, the EnergySage
platform enables households to conduct multi-a�ribute auctions to select installers for their
projects. Multi-a�ribute auctions (also called beauty contest auctions) refer to a procurement
mechanism in which each bidder submits a multi-dimensional bid that includes a price and

9See Appendix Table A.1 for a listing of the markets included in this study.
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a vector of other characteristics, such as solar panel brand or inverter type. �e buyer then
selects the winning bidder based on their preference over these multi-dimensional bids.10

Each auction includes several stages. First, consumers create an account on the platform’s
website and provide information, including the physical household address for the potential
installation, a monthly electricity bill, and an indication of whether they obtained other so-
lar installation bids o�-platform. Second, registered installers receive a project noti�cation,
including details such as a Google Maps photo of the buyer’s roof, the buyer’s monthly elec-
tricity usage, and whether the buyer has other o�-platform quotes. Installers then choose to
submit a project quote to the buyer. A bid contains information about pricing, the system
size, and speci�c hardware characteristics (e.g., panel brand, panel ratings, inverter type, and
brand, etc.). �e platform also gives buyers details about the seller, such as their rating—stars
on a scale from 1 to 5—and a description of their solar installation experience. Finally, a�er
installers submit their bids, the consumer is free to select one of the quotes and complete the
transaction directly with the installer or opt out and not purchase any of the o�ers.11

We access several key variables on buyers and sellers in the EnergySage data. First, we ob-
serve characteristics of each potential buyer, including the census block where the home is
located, the household’s average monthly electricity bill, and roof age. We further observe
survey-based data from EnergySage regarding each household’s preferences over equipment
and �nancing and retrospective data on if households adopted solar outside the platform. Sec-
ond, we observe detailed information on the sellers’ bids submi�ed to each buyer. �e bid data
includes the price, hardware speci�cs (e.g. panel brand, panel quality, etc.), the capacity of the
solar array, and a�ributes of the seller (e.g. quality “star” ratings). Importantly, we observe a
unique installer ID associated with each bid, so we can investigate how a particular installer’s
bidding behavior changes across projects. Finally, we observe which bid, if any, is selected by
each buyer.

2.2 Household and Neighborhood Demographic Data

EnergySage did not collect consumer demographic information during the sample period of
this study. However, they report each buyer’s location at the census block level. We use this
locational information to collect demographic characteristics of each household from data
available in the 2017 American Community Survey (ACS). �e census block is the smallest
geographic unit in the US Census. �us, we can merge precise information about each buyer’s
neighborhood demographics from the ACS.

�e main variables we extract from the ACS are median household income and the racial

10Multi-a�ribute auctions are related to scoring auctions but di�er in that the auctioneer does not explicitly
announce the choice rule ex-ante (i.e. weights on each characteristic), as they would in a scoring auction.

11Buyers and sellers can communicate with each other via private messaging or phone calls before a selection
is made. However, sellers cannot call a buyer unless they are requested to do so by the buyer.
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and ethnic composition of their block group. We collect the racial and ethnic composition
variables for homeowners only because owning a home is generally required to purchase a
solar PV system.12 We assign the median household income to each household for the entire
census block (i.e., for both renters and owners) since income variables by home-ownership
status are redacted at the block group level in the publicly available US Census data.

2.3 Inferring Buyers’ Race/Ethnicity From Names and Locations

One of our primary research objectives is to identify factors contributing to the ethnic or
racial gap in solar PV adoption documented by Sunter et al. (2019). Absent directly measured
survey questions about race and ethnicity for each household, we create a measure of race
and ethnicity based on each buyer’s name and the census characteristics of their block group.

In particular, we use these data to create binary measures of race and ethnicity following the
two-step approach used in Diamond et al. (2019). In the �rst step, we use US Census data that
provides the distribution of ethnic identities associated with thousands of common surnames
to assign a probabilistic distribution of racial/ethnicity to each buyer in the data.13 In the
second step, we update this distribution based on the household’s last name using the racial
composition of homeowners in the buyer’s census block using Bayes’ rule. We calculate the
probability that a buyer belongs to race or ethnicity r conditional on having name s and living
in census block g as:

P (r | g, s) =
P (r | s)P (g | r)∑

r′∈R P (r′ | s)P (g | r′)
(1)

whereR denotes the set of six possible race/ethnic categories–Black, White, Asian and Paci�c
Islander (API), American Indian or Alaska Native (AIAN), Hispanic and other.

Since the US Census Bureau measures race and ethnicity separately in the ACS these vari-
ables are subject to overlap. To account for this data feature, we make assumptions to en-
sure our race and ethnic probabilities sum to one. In practice, we build this distribution of
race and ethnicity so that the racial measures only include households who identify as that
race and not Hispanic. However, as noted previously, we want these distributions to re�ect
homeowners only. Since the publicly available ACS data does not report the trivariate dis-
tribution of race-by-ethnicity-by-homeowner at the block-group level, we construct this dis-
tribution using the two bivariate distributions of race-by-ethnicity and race-by-homeowner
and an assumption—that the race-by-ethnicity distribution for homeowners is the same as
the entire block group (including renters). Using this assumption, we can construct the race-
by-ethnicity-by-homeowner distribution and take conditional probabilities to create ethnic

12�is choice helps us avoid potential mismeasurement introduced by di�erences in the racial or ethnic
composition of neighborhoods for renters and buyers.

13EnergySage cannot release each buyer’s name based on their privacy terms and conditions; however, they
did match each household by last name to the US Census database on racial and ethnic population shares.
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and racial measures that are mutually exclusive. We use this constructed distribution to net
out any overlap between Hispanic-identifying households and each race, as in Diamond et al.
(2019).14

Finally, and following Diamond et al. (2019) again, we use the resultant proportions for each
household to create binary measures of race and ethnicity equal one if the Bayesian probability
for that race or ethnicity is 0.8 or greater. If no race or ethnicity passes this threshold, we
de�ne that household as “Unclassi�ed”. Notably, we omit the American Indian or Alaskan
Native group from our analysis, given that only a handful of these observations are in our
sample.

2.4 Installer Data

We do not observe �rms’ exact identities in the data (i.e. �rm names or detailed locations).
However, we observe the distance between the installer and the potential buyer for each bid
in the dataset, which we can use in conjunction with the household location data to infer
installers’ approximate locations. Given that we observe household locations at the block
group level, if a given installer bids on households in three distinct census blocks, we can
use this triplet of distances to infer installer locations based on trilateration. We conduct
this process at the CBSA level and restrict installers within 250 miles of the household to be
included in the trilateration exercise. �is procedure requires a minimum of three bids across
di�erent block groups–however–to improve �t for those bidding in more than three block
groups, we use non-linear least squares to �nd the location for each installer that minimizes
the residual distance for all bids for that installer.

Lastly, we observe sellers’ ratings on the EnergySage platform and use them to measure in-
staller quality. As is standard on many online marketplaces, buyers can rate sellers based
on their interactions on the EnergySage platform. EnergySage aggregates this information
via star ratings between 0 and 5 and then displays these ratings to potential buyers on the
platform. We observe these ratings in our data, which we use to control for installer quality
throughout our analysis.

14As an example, consider a block group that is 40% Hispanic with a homeowner-only racial distribution of
60% Black and 40% API. Now assume that 25% of all (i.e. both renter and homeowner) API households identify
as Hispanic and 50% of all Black households identify as Hispanic. �en of the 40% Hispanic households–30%
of this represents dual-identifying Black and Hispanic households, and the remaining 10% represents API and
Hispanic households. With the constructed race-by-ethnicity-by-homeowner distribution, we simply calculate
conditional probabilities to determine that this block group is 40% Hispanic, 30% non-Hispanic Black, and 30%
non-Hispanic API. We omit the “non-Hispanic” quali�er for ease of exposition when discussing impacts across
di�erent racial groups.
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2.5 Summary Statistics

�is section reports basic summary statistics regarding our sample of households and in-
stallers, in turn. Overall, the households in our sample live in areas with relatively high me-
dian income. �e average household in our sample belongs to a block group with a median
income of $103,000. �is statistic is not surprising for a few reasons. First, our analysis focuses
on the 15 CBSAs with the most EnergySage activity, which represents major metropolitan ar-
eas with relatively high earnings compared to the rest of the country (see Appendix Table A.1
for a listing of the CBSAs in this study). Second, this is a sample of homeowners that have
selected to shop for an expensive investment in durable capital, so we may expect them to
live in relatively a�uent areas. Nonetheless, the sample contains considerable variation in
income.

In Appendix Table A.2, we report summary statistics separately by income quintile. For this
exercise, we break our sample into income quintiles based on the classi�cation of a house-
hold’s median block-group income.15 Median block group income ranges from $11,625 to
$250,000. �e average incomes within each quintile bin are $49,810, $75,390, $96,990, $121,120,
and $172,750, respectively. �e table shows that high-income households have relatively
larger monthly electricity bills. Unsurprisingly, high-income households are more likely to
report a preference for cash purchases instead of loan contracts. �e non-response rate to the
platform’s optional onboarding questions also decreases with income.

In Appendix Table A.3, we report summary statistics across household race/ethnicity. In
the bo�om panel of this table, we tabulate the number of households and bids by our bi-
nary race/ethnicity measures discussed in the previous section. �is sample contains data on
56,011 households and 243,120 bids. Across the households in our �ve race and ethnicity cat-
egories – API households account for 13.1%, Black households for 1.2%, Hispanic households
for 7.2%, White households for 64.6%, and Unclassi�ed households for the remaining 13.9%.
In terms of bids, the proportions are roughly similar. API households received 14.1% of all
bids, Black households received 0.8%, Hispanic households received 7.7%, White households
received 63.6%, and Unclassi�ed households collected the remaining 13.8% of all bids.

�e table reveals variation in (block-group median) income across race and ethnicity. Tak-
ing White households as the reference group, API households live in areas with higher in-
come while Black and Hispanic households live in areas with lower income. However, as
shown in Appendix Figure A.1a, these distributions overlap considerably. We also see that
White households have the largest monthly electricity expenditures, followed by Hispanic,

15We show the bounds for each quintile in �rst two rows of the bo�om panel of Table A.2.
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Black, and API households, respectively.16 Concerning contract preference—Appendix Figure
A.2 shows that White, API, and Unclassi�ed households possess a stronger preference for
purchasing, whereas Black and Hispanic households prefer loan and lease arrangements. In
terms of roof age–a key determinant of the readiness for a new solar installation–63% of all
households report having a roof less than 20 years old or plan to replace their roof before or
coincidentally with the roo�op solar installation. �is value is roughly similar for all racial
and ethnic groups. About 10% report having a roof older than 20 years.17

2.6 Installer Locations

Finally, we summarize how proximity to solar installers varies across demographic charac-
teristics of the installers. We display these tabulations in Panel A of Table 1 for income and
Panel B for race/ethnicity.

�e table �rst summarizes the total number of installers available to bid for each household’s
project. Our “All Installers” metric captures all installers located within 250 miles. Next,
the table shows the number of installers within various distance bands for each group of
households. Across the income groups, the total number of installers are roughly similar
across all �ve income quintiles. For the four distance bands we consider, the mean number
of installers is roughly monotonic–suggesting higher-income households are closer to more
installers, on average. For example, we see 21% more installers located within 10 miles of the
highest-income households relative to the lowest-income households.

�e bo�om panel demonstrates that Black households have fewer installers within every dis-
tance band than other race/ethnicity categories. Across our race/ethnicity categories, Hispan-
ics have the most installers within this 250 miles at 42.57. Black households have the fewest
installers with 31.74 installers within this band. White, Unclassi�ed, and API households are
in the middle with 36.11, 37.30, and 39.48 installers, respectively. We also tabulate this di�er-
ence for 5, 10, 25, and 50-mile bands. Notably, for the two smallest bands–5 and 10 miles–we
observe that White and API households have the most installers, whereas Black, Hispanic, and
Unclassi�ed households have fewer. At 25 miles, the distribution is quite similar for all races–
except Black households. At 50 miles – it becomes even more apparent that Black households
have fewer installers nearby–18.53 while all the other races are substantially higher – 25.18 for
API households, 23.04 for Hispanic households, 21.25 for unclassi�ed households, and 20.07
for White households.

16�e box-plot we show in Figure A.1b re�ects that any small deviations across the average monthly electric-
ity spend across racial/ethnic groups are well within the bounds of statistical similarity. Since electricity rates
di�er, the same bill spent in one area may re�ect higher or lower energy usage. We do not have detailed data on
these households’ electricity rates, and thus do not a�empt to decode these bill amounts into monthly electricity
usage.

17However, we note that non-response on these survey measures is higher for Black and Hispanic households
and thus may be subject to selection bias.
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Table 1: Number of Potential Installers By Distance

Panel A: Income �intile
Income �intile

1 2 3 4 5
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

All Installers 36.48 37.36 37.72 37.43 36.67
(15.22) (15.54) (15.09) (14.63) (12.92)

Number of Installers Within:
5 Miles 0.87 0.96 0.97 1.07 1.02

(1.58) (1.65) (1.58) (1.51) (1.41)
10 Miles 2.67 2.89 3.03 3.10 3.23

(3.20) (3.40) (3.31) (3.20) (2.95)
25 Miles 9.95 10.64 11.23 11.49 11.70

(7.18) (6.89) (6.73) (6.28) (5.93)
50 Miles 18.96 20.63 21.84 21.85 22.21

(10.70) (10.77) (10.48) (9.54) (8.53)

Panel B: Race/Ethnicity
API Black Hispanic Unclassi�ed White

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

All Installers 39.48 31.74 42.57 37.30 36.11
(12.79) (18.93) (14.61) (15.22) (14.69)

Number of Installers Within:
5 Miles 1.01 0.52 0.81 0.91 1.01

(1.42) (0.86) (1.59) (1.44) (1.60)
10 Miles 3.34 1.97 2.72 2.87 2.98

(2.71) (1.63) (3.45) (3.09) (3.33)
25 Miles 12.34 9.73 11.35 11.03 10.71

(5.61) (6.72) (7.35) (6.70) (6.71)
50 Miles 25.18 18.53 23.04 21.25 20.07

(9.40) (11.13) (11.76) (10.53) (9.69)

Notes: Means reported for each group with standard deviation in parentheses below. �e variable All Installers is
constructed by counting the number of installers with 250 miles of the project.

In summary, lower-income households seem to be located further from installers and have a
lower preference for purchasing versus �nancing their system. Furthermore, Black and His-
panic households are more likely to be on the lower end of the income distribution in this
sample, and Black households speci�cally may have less access to installers. In the next sec-
tion, we conduct a descriptive analysis of the market-based bidding data to analyze di�erences
in equilibrium market outcomes across these groups directly.

3 Descriptive Analysis

In this section, we investigate heterogeneity in market outcomes across race and income, con-
trolling for time and geography. We evaluate di�erences in the number of bids, prices of these
bids, and adoption rate for each race and income group. We use two measures of adoption: the
close rate, which is de�ned as adoption conducted within the EnergySage platform, and the
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adoption rate, which also includes households who self-report roo�op solar adoption through
an o�-platform source in an exit survey conducted by EnergySage.

Given that bidding and pricing behavior is a function of a general equilibrium of supply and
demand, this analysis measures changes in equilibrium prices. As such, we show these results
to help structure our thinking about which variables to include in our structural model but do
not interpret these results as causal. We control for CBSA-by-year �xed e�ects to help avoid
confounding these descriptive results with any �xed geographical or time-based impacts that
may bias our coe�cients. We explicitly model these descriptive relationships by estimating
regressions of the following form:

Yicy = α +

q=4∑
q=1

βd1[i ∈ Income �intile = q] +
∑
r∈R

θr1[i ∈ Race = r] + γcy + εi (2)

whereYicy represents our dependent variable for buyer i in CBSA c in year y. �e β coe�cients
represent the change in the dependent variable by income group, the θ coe�cients represent
the change in the dependent variable for each race/ethnicity, and the γcy coe�cient represents
�xed e�ects at the CBSA-by-year level. In these regressions, the omi�ed category is high-
income (i.e. ��h income quintile) White households.

For bids and prices, we conduct this analysis using a count of the number of bids and the me-
dian price of all bids a household receives. We apply a log transformation to these dependent
variables, so we interpret the β and θ coe�cients as an approximate percentage change in the
dependent variable. For our adoption measures—the close rate and adoption rate—we run the
regressions in levels and divide the estimated coe�cients by the constant parameter, α, which
roughly represents the e�ect for the omi�ed group–so that these estimates can be interpreted
as a percentage change relative to the reference category.18

We begin by documenting di�erences in on-platform purchase rates and survey-reported
adoption rates (including o�ine adoption) across demographic groups. We show the results
of this analysis in Figures 2a and 2b, for both the close rate and reported adoption rate, re-
spectively.

�ese regressions con�rm that higher income is associated wither higher adoption rates–
whether we analyze the platform close rate or adoption rate reported in the consumer exit
survey. �e lowest quintile is nearly 25% less likely to adopt via the platform and nearly
6% less likely to adopt via our exit-survey-based adoption measure, including o�-platform
adoption. For the second quintile, these di�erences are 15% and 3%, respectively. �e co-
e�cient estimates for the third and fourth quintile groups re�ect lower adoption for these
groups too. Regarding on-platform adoption, the third and fourth quintiles are 8% and 2%

18We are restricted to reporting these changes as relative percentage changes as EnergySage protects the
actual close rate as a trade secret.
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Figure 2: Descriptive Regression Estimates

(a) Relative Close Rate by Income & Race (b) Relative Overall Adoption by Income & Race

(c) Number of Bids per Project by Income & Race (d) Median Bid Price by Income & Race
Notes: Each panel presents regression coe�cients estimated from a regression of the selected variable on
income and race. For example, in panel (c), the dependent variable is the logarithm of the number of bids
received by a household, and the explanatory variables are income quintile and race. All coe�cients are
relative to white households in the 5th income quintile.

less likely to adopt, respectively–although the result for the 4th quintile is not statistically
signi�cant. Overall adoption is about 2% lower for both of these groups, but these estimates
are not statistically distinguishable from zero.

In addition, the regressions show disparities in adoption rates with respect to race and eth-
nicity. Compared to White households, Black households’ on-platform adoption is roughly
18% lower, and overall adoption is roughly 2.5% lower, but neither result is statistically sig-
ni�cant. API households exhibit about 8% higher adoption on-platform and about 1% higher
in overall adoption than White households, although the la�er of these results is not signif-
icant. Notably, Hispanic households exhibit the biggest reduction in adoption–nearly 32%
lower on-platform and 7.5% lower overall. Moreover, Unclassi�ed households are statistically
indistinguishable from White households.

Having found signi�cant di�erences in solar purchase rates across demographic groups, we
turn to consider supply-side decisions. Notably, we investigate how the number of bids sub-
mi�ed to each household and the prices of those bids varies across households.
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Figure 3: Household Characteristics and Installer Entry Probability

(a) Household Income (b) Installer’s Distance to Project
Notes: Panels (a) and (b) depict the probability of installer entry by the household’s block group median income
and installers’ distance to the project. Each point is calculated as the mean probability of entry among each
quantile bin a�er controlling for CBSA �xed e�ects. �e sample includes all installer-project pairs in which
the installer is located less that 250 miles from the project.

In Figure 2c, we plot the coe�cients and 95% con�dence intervals from our regressions relat-
ing the number of bids a household receives to race, ethnicity and income. Concerning race
and ethnicity – we �nd that relative to high income (i.e. 5th income quintile) White house-
holds, API households receive roughly 5% fewer bids, and Black households receive roughly
9% fewer bids. Hispanic and unclassi�ed households receive slightly more bids than high-
income White households, but this e�ect is statistically insigni�cant. For income, the impacts
are monotonic across quintiles. �e lowest income quintile receives about 8% fewer bids, the
2nd quintile receives about 6% fewer bids, the 3rd quintile receives about 3% fewer bids and
the 4th percentile receives 2% fewer bids.19

To be�er understand why low-income households obtain fewer bids, Figure 3a and 3b illus-
trate the relationship between the empirical probability that each potential installer bids on
a project as a function of the household’s block group income and installers’ distance to the
project. In the previous subsection, we saw that low-income households are likelier to be
farther away from potential installers. �e binned sca�er plot in Figure 3b indicates that in-
stallers are less likely to bid on projects that are further away. In particular, installers located
within 10 miles of a project submit a bid 10-12% of the time, whereas the probability of bid-
ding falls to below 7.5% when a project is over 100 miles away. �ese pa�erns suggest that
installers’ locations are a potentially important factor explaining the lower number of bids
received by low-income households.

Receiving fewer bids indicates that Black and lower-income households get less a�ention from
installers. Nonetheless, the price of these bids ma�ers, too, since the consumer only needs to

19Given the distribution of race and income shown in A.1a, some of these impacts are likely compounding
for black households. For example, Black households in the 1st quintile of income receive about 17% fewer bids
than high-income White households, on average.
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contract with a single installer. If a household receives fewer bids–but these bids also come
from a lower price distribution (holding quality constant)–then we may not expect receiving
fewer bids to translate into lower adoption for these groups. We analyze the median price each
group of households receives to capture the central tendency of the bids that are submi�ed.

In Figure 2d, we show that higher-income households receive bids with a lower price-per-
wa�. Notably, these coe�cient estimates do not net out any economies-of-scale related to the
system size. �antitatively, these coe�cients are precisely estimated but small in magnitude–
the wedge between the lowest income and highest income household is about 1.5%. �ese
point estimates are consistent with economies-of-scale associated with larger systems being
quoted to richer households. Appendix Figures A.3a and A.3b contain binned sca�er plots
of the relationship between bid prices and household income, and bid prices and the solar
PV system’s size in kilowa�s. �e sca�er plots a�rm that bid prices (per wa�) are declining
with income, but importantly that price-per-wa� is also declining with the size of the PV
system. Larger systems tend to have lower per-unit prices because some components, such
as inverters and permi�ing costs, are �xed. High-income households tend to have larger
electricity bills and larger roofs. �ey, therefore, are more likely to install larger PV systems
which contributes to the price disparities that we observe in the data.

Regarding race and ethnicity, Hispanic households receive roughly similar prices to high-
income White households, but API, Unclassi�ed, and Black households receive higher prices.
For API and unclassi�ed households, this e�ect is quite small at about 0.5%. For Black house-
holds, however, this impact is much larger–an increase of nearly 3.25% compared to high-
income White households. Again, given the distribution of income and race, the price wedge
for Black households is the largest, given they are more likely to be in the lower two quintiles
of income.

Taken in tandem, these results suggest that low-income households receive fewer bids with
higher prices than their high-income counterparts, and minority households receive fewer
bids and higher prices than White households–with a larger wedge for Black households than
the API, Hispanic or unclassi�ed groups.

Lastly, we explore mechanisms explaining the bid quantity and price disparities across house-
holds’ race and ethnicity. Recall that our measure of household race/ethnicity contains two
sources of information: (1) the racial composition of the household’s census block group and
(2) the racial information contained in the household’s surname (i.e., the probability that a
name belongs to race/ethnic group). Bertrand and Mullainathan (2004) show that �rms may
discriminate based on information contained in individuals’ names in remote interactions.
�erefore, we estimate regressions to test whether the disparities in bidding across racial
groups are primarily explained by racial information contained in buyers’ name versus the
buyer’s neighborhood (i.e., the race/ethnic makeup of the buyer’s census block group.) In
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particular, we estimate regressions analogous to Equation 2 except we omit our preferred
binary race/ethnicity variables and instead include as regressors: (1) the proportion of each
race/ethnicity group within the households’ block group and (2) the probability that each
buyer’s name belongs to a race/ethnicity group. �e results in Appendix Table A.4 show that
neighborhoods and not names overwhelmingly explain the racial disparities in bid prices and
the number of bids. Speci�cally, the coe�cients on each variable for the racial proportion of
the buyer’s name are estimated as precise zeroes. In contrast, the information in the census
block composition has economically signi�cant associations with the number of bids and bid
prices. We take these results as evidence that installers are primarily adjusting bidding be-
havior based on the locations of buyers. We do not �nd evidence of installers screening on
buyer’s names as in Bertrand and Mullainathan (2004). One caveat to these �ndings is that
our information about buyers’ names is imprecise because we only use information from the
buyer’s last name and not the �rst name.

4 Model

Motivated by the data pa�erns in the previous section, we develop a structural model that in-
corporates heterogeneous buyer preferences and strategic bidding by sellers, following Dorsey
(2022). Buyers in our model make a discrete choice between the installation bids submi�ed
for their project and the outside option. When estimating the buyers’ choice rule, we allow
for heterogeneity in price sensitivity across the household’s income and race. On the supply
side, installer place bids to maximize their expected pro�ts, given their expectations about
demand and competing supply bids.

�e model allows us to investigate further the distributional disparities we documented in the
previous section. We use the demand model to evaluate demand elasticities and consumer sur-
plus separately across income and race. In addition, we use the supply model to separate bid
prices into a markup and a cost element. We interpret the cost element implied by our model
as the sum of explicit costs (e.g. labor and materials) and implicit costs (e.g. distaste for serv-
ing minority buyers, the time cost of traveling across town, etc.). As such, the supply model
allows us to understand be�er why installation prices vary across household demographics.

In the following subsections, we describe the details of the demand and supply model in detail.

4.1 Demand

LetKi ⊂ N (zi) be the set of sellers that decide to participate in the auction for project i. Buyer
i then chooses between the project bids and an unspeci�ed outside option (k0) to maximize
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their utility. Buyer i’s utility from selecting option j is given by:

uij = Bijαi + x′ijβ + w′jγ + δi + ζig + (1− λ)εij

αi = z
(d)′
i α̃, δi = z

(s)′
i δ̃ (3)

HereBij is the bid price for option j, and αi is the price sensitivity of buyer i. Buyer price sen-
sitivity, αi, is a function of an m-dimensional vector of household demographic characteristics
denoted z(d) = z1:m, including the households’ race and income. Utility is a�ected by xij , the
non-price characteristics of the bid, such as the panel brand quality. Buyers’ utility also de-
pends on �xed a�ributes of each seller across bids, wj , such as installer �xed e�ects. �e δi
term is a demand shi�er for buyer i allowing the utility for all of the installation bids to vary
depending on a p-dimensional vector of the household’s survey responses, z(s) = zm+1:m+p,
such as the household’s geographic market, the year the bids were solicited, the household’s
monthly electricity expenditure, roof age, equipment preferences, and �nancing preferences.
�e variables determining the project type, z, include both sets of household-level variables
in z(d) and z(s).

Choices are also in�uenced by εij , a random term we assume is independent and identically
distributed from a type-one extreme value distribution. ζig is also an idiosyncratic term but is
assumed to be constant for each buyer across all the “inside options”. ζig follows the unique
distribution such that ζig + (1 − λ)εij is also an extreme value random variable. �is utility
speci�cation gives rise to the nested logit model (Cardell, 1997). �e nested logit model allows
for more �exible substitution pa�erns than the standard logit model since it allows for corre-
lation in preferences among products within pre-speci�ed groups. We specify one group to be
the outside option, and the other group to contain all of the project bids. As λ approaches zero,
each buyer has no correlation in preferences for each “inside option”, and the model reduces
to the standard logit model. As λ goes to one, the random component of buyers’ preferences
for each “inside option” become perfectly correlated. Finally, the overall level of utility is not
identi�ed, so we normalize the utility of the outside option to equal zero plus an error term.
Notably, the outside option in our context subsumes choosing an o�-platform installer or a
decision not to install solar PV.

In modeling the buyer’s choice, we assume each buyer chooses the installation option that
delivers the highest utility per unit of capacity. �erefore, Bij in utility is the bid price in
dollars-per-wa�. Current public policies largely dictate each buyer’s optimal system capacity.
In particular, net-metering rules allow residential solar customers to sell electricity generated
by their roo�op system to their utility at the retail electricity rate as long as the household’s
annual generation does not exceed their annual consumption. Any solar generation that ex-
ceeds the household’s annual consumption is compensated far below the retail rate. As a
result, the system capacity that will deliver the largest net present bene�t to the buyer is the
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capacity that equates the expected annual solar generation with the expected annual electric-
ity use.20

4.2 Supply

We model the installers’ bidding decisions in a multi-a�ribute auction (Dorsey, 2022; Kras-
nokutskaya et al., 2019; Yoganarasimhan, 2015). In the multi-a�ribute auction se�ing, sellers
choose to enter an auction knowing their own marginal cost and the mean utility parameters
of the buyer but face uncertainty about both the number of competing bidders, the identity
of the competing bidders, and the buyer’s preference shocks. We assume that sellers know
the distribution of buyers’ preference shocks and have rational expectations over the entry
probabilities and price bids of potential competing sellers. More speci�cally, they know the
characteristics of other active sellers, the price distribution of those sellers’ bids, and the prob-
ability that those sellers will bid in the auction.

We index sellers by j and di�erentiate them based on a vector wj . A seller’s type could be
distinguished by a relatively parsimonious measure such as a star-rating category, a relatively
higher dimensional variable such as a unique installer ID (i.e., seller �xed e�ects), or a combi-
nation of variables. Each seller’s type is observable to both the buyer and the other potential
sellers. If a seller chooses to participate in the auction for project i they then also select a price
bid Bij . Each seller is only permi�ed a single bid for each project. Sellers’ bids are character-
ized by their price in addition to a vector of non-price characteristics xij , such as panel quality
and inverter type. In contrast to the seller’s type wj , xij is allowed to vary across projects for
a given seller.

We focus on modeling �rms’ bid pricing problems conditional on choosing to participate in
an auction. A�er deciding to enter an auction, �rms learn their exact marginal cost, the non-
price characteristics (such as the panel quality of the system), and the capacity of the system.
As in Dorsey (2022), we assume that sellers do not strategically choose the non-price price
characteristics and system capacity. �ese assumptions are necessary for the tractability of the
model and are supported in the data (Dorsey, 2022).21 Conditional on this revealed information
set, �rms choose a bid price to maximize expected pro�ts. More explicitly, �rm j solves the
following problem when se�ing a bid price for project i:

max
Bij

qij[Bij − cij] · Pij(Bij | xij,wj, zi) (4)

20In practice, each installer can propose a di�erent system capacity when bidding through the platform. In a
later section, Dorsey (2022) shows that the demand estimates are robust to controlling for the proposed system
capacity as a non-price bid a�ribute and that the demand elasticities are relatively similar using a discrete-
continuous choice utility formulation.

21Speci�cally, Dorsey (2022) shows that installers largely bid the same hardware across subsequent products
regardless of buyer characteristics and that system capacity is relatively �xed across bids and not a�ected by the
expected number of bidders for a given project.
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Where qij is the system capacity, Bij is �rm j’s per-unit price bid, and cij is �rm j’s marginal
cost. Pij(Bij | xij,wj, zi) is the equilibrium expected probability of winning the auction con-
ditional on placing a bid price ofBij . �e equilibrium expected probability of being selected is
also a function of the project type zi, the seller’s type wj , and the non-price characteristics of
the bid xij . �e project type, zi, is characterized by the geographic market where the project is
located, the time period, and the household’s characteristics. We categorize sellers into types
wj using a relatively parsimonious measure using either the seller’s ratings and reviews or
seller-speci�c indicators (i.e., seller �xed e�ects).

We work with expected probabilities since the seller does not know exactly which competitors
they will face nor the bids of those competitors. We note that the solution to the bid pricing
problem is not a function of the system capacity realization, qij enters the expected pro�t
function multiplicatively and, therefore, does not directly in�uence the optimal per-unit bid
price. However, the system capacity can indirectly a�ect the price bid if system capacity and
marginal cost are correlated.

When formulating �rms’ expectations, we assume that all sellers submit their bids simulta-
neously. �erefore, the installers do not know the exact number of bidders they will compete
against nor the identities of their competitors. �us, �rms’ expectations about the probability
of winning will only be a function of the project characteristics, conditional on the price and
non-price characteristics of their bid.22

Under the assumption of simultaneous bidding, we expand a �rm’s expected probability of
winning Pij as follows:

Pij(Bij | xij,wj, zi) = E[Probij(Bij;Bi,−j,Xi,−j,W−j | xij,wj, zi)] =∫
Probij(Bij;Bi,−j,Xi,−j,W−j | xij,wj, zi) · dG(Bi,−j,Xi,−j,W−j | zi)

(5)

Recall that Probij is the probability that buyer i selects �rm j’s bid conditional on realized
vector of competing price bids Bi,−j , having a stacked vector of non-price characteristics
Xi,−j , and having types W−j . G represents the joint distribution function of Bi,−j,Xi,−j ,
and W−j occurring in equilibrium, conditional on the project being of type zi.23 Since each
�rm’s entry draw and marginal cost draw is assumed to be i.i.d., we can express dG as the
product of the probabilities that each competing �rm l decides to enter the auction and then

22In practice, �rms on the platform submit bids at slightly di�erent times. Although the identities of com-
peting bidders are not visible to auction participants, �rms can see how many bids have already been submi�ed
for a given auction. �erefore, it is possible that �rms could update their expectations based on the number of
bids that have already been submi�ed. Dorsey (2022) provides evidence that the assumption reasonably approx-
imates �rms’ behavior by showing that sellers’ bids do not vary systematically depending on the bid’s submi�ed
order.

23G is only a function of zi because a seller’s typewj and non-price characteristicsxij are private information
at the time of bidding.
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bids Bil and has non-price characteristics xil.

We de�ne the optimal bid function asB∗il(cil | xil,wl, zi) and the probability a potential seller
l of type wl enters an auction of type zi as H(wl, zi). �us, we obtain:

dG(Bi,−j,Xi,−j,W−j | zi) =∏
l∈N (zi)\{j}

H(wl, zi) · dFCX|wl,zi

(
B∗−1(Bil | xil,wl, zi),xil | wl, zi

) (6)

Where B∗−1 represents the inverse bid function. �e expression inside the product is the
probability that �rm l enters the auction multiplied by the probability that �rm l bids Bil and
has non-price characteristics xil.

Firm j’s �rst-order condition for an optimal bid is given by:

(Bij − cij)
∂Pij(Bij | xij,wj, zi)

∂Bij

+ Pij(Bij | xij,wj, zi) = 0 (7)

Given a vector of non-price characteristics, Equation 7 implicitly de�nes the optimal bid func-
tion B∗ij(cij | xij,wj, zi).

We follow Yoganarasimhan (2015) and do not impose structural assumptions on sellers’ entry
decisions in estimation. In principle, it is possible to explicitly model auction entry decisions
as in Dorsey (2022) and Krasnokutskaya et al. (2019). However, EnergySage changed its rules
and commission structure starting in 2019 in a way that makes the entry incentives asymmet-
ric across sellers. As such, we estimate �exible reduced-form entry probabilities forH(wl, zi)

instead of modeling the underlying micro foundation for these entry probabilities. �is ap-
proach is appealing for tractability but does not allow us to estimate counterfactual changes
in auction entry behavior.

4.3 Equilibrium

For each seller j, a strategy consists of a bidding function w× z×x× c→ R+. In particular,
�rms consider the project type, their seller type, their marginal cost draw, and their non-price
characteristics to form a price bid. We follow the convention in the literature by focusing
on type-symmetric pure strategy Bayesian equilibrium (Krasnokutskaya et al., 2019). �at
is, all sellers of the same type possessing the same non-price characteristics use the same
bidding strategy in equilibrium. An equilibrium requires that all �rms satisfy Equation 7
given the other installer’s strategies. Krasnokutskaya et al. (2019) proves the existence and
uniqueness of a type-symmetric pure strategy Bayesian equilibrium of this game.24 �e next

24Krasnokutskaya et al. (2019) and Dorsey (2022) also model the �rms’ entry decision; there is no guarantee
of a unique equilibrium in the participation stage of the game.
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section describes the estimation procedure in detail.

5 Estimation

We estimate the structural parameters in two steps. First, we solve for the demand parameters
via maximum likelihood. Second, we use the estimated demand parameters to simulate �rms’
�rst-order conditions for each bid in our data and recover bid-speci�c markups. We discuss
the details of each step in the following subsections.

Demand Estimation

From Equation 3 we observe four sets of variables that a�ect a buyer’s utility: (1) B, the bid
price; (2) z(d), household demographics that determine price-sensitivity; (3) z(s), households’
survey responses that shi� the buyer’s preference for all of the installation bids (i.e., shi�s the
likelihood of picking the outside option); and (4) x, variables that characterize the non-price
a�ributes of each participating installer’s bid.

We measure the bid price that enters a buyers’ utility for option j in dollars-per-wa� and
scale this value to 70% of each installer’s gross bid price to account for the 30% Investment
Tax Credit (ITC). We refer to this a�er-incentive price as the “net price”.25 We allow price
sensitivity to vary across household income, race, and ethnicity. In particular, we separate the
sample into quintiles based on median income and race/ethnicity. �e income quintiles are
determined based on the median household income of the household’s census block group. We
also identify the household head’s race/ethnicity as being either: (1) Asian or Paci�c Islander,
(2) Black, (3) Hispanic, (4) White or Unclassi�ed. We refer to the fourth group simply as
“White” households. �erefore, we have nine total variables (including a constant) that shi�
the price coe�cient z(d), with the constant term representing the price coe�cient for White
households belonging to the ��h income quintile.

�e vector z(s), which shi�s utility for all of the inside options, includes �xed e�ects for each
CBSA and each year of the sample. We also include a set of variables that indicate households’
responses to a set of survey questions when they create an account through the platform. All
households are required to report their electricity expenditure and an indication of whether
they already have quotes from o�-platform installers. �erefore, we include the natural log of
the household’s reported monthly electricity expenditure and a dummy variable for whether
the household obtained o�-platform quotes in z(s). Households can optionally report informa-
tion about the age of their roof, their solar panel equipment preferences, and their �nancing

25�is speci�cation implicitly assumes that buyers value a one-dollar reduction in the gross price the same
as a one-dollar increase in the tax credit. �is assumption is consistent with the existing literature (e.g., Langer
and Lemoine, 2022) and is reasonable in this context because, in most cases, the tax credit is paid out to the buyer
within one year of the system purchase upon �ling an annual tax return.

24



preferences. Accordingly, we include three sets of indicator variables in z(s). First, we include
an indicator for households with a roof less than 20 years old (or plans to replace the cur-
rent roof), an indicator for a roof over 20 years old, with an omi�ed category representing
a missing survey response about roof age. Second, we add an indicator for preference over
high tech/high production/a�ractive panels, and an indicator for high-value panels (i.e. eco-
nomical), with the omi�ed category counting those with a missing response about technology
preferences. �ird, we have an indicator for a preference for a cash purchase and an indicator
for a preference for a loan or lease. Again, the omi�ed group represents those households
who did not report a response about �nancing preferences.

Finally, the utility for each option is also a function of several non-price characteristics. We
include one set of �xed e�ects for the quality of the solar panels as rated by EnergySage, which
include: “Excellent”, “Very Good”, “Good”, “Fair/Poor”, and “Missing Rating”. We also include
�xed e�ects for the installer’s star rating category and a set of �xed e�ects that measure the
installer’s installation experience. Moreover, we allow for additional heterogeneity in seller
quality by including “permanent” installer �xed e�ects for each installer that placed over 1000
total bids through the platform during the sample period. �ese permanent sellers account
for over 80% of the bids in our data.

Inferring Markups and Marginal Costs

Next, we use these demand estimates to recover a markup for each bid. We solve for this
markup by inpu�ing our �nal demand estimates into each �rm’s �rst-order condition for an
optimal bid de�ned by Equation 7. Notice that we cannot write a closed form for the FOC
since it contains two expectations ∂Pij(Bij ,xij ,wj |zi)

∂Bij
and Pij(Bij,xij,wj | zi). �erefore, we

identify this FOC by integrating the �rm’s probability of winning over di�erent realizations
of competitor sets and competitor bid prices that are unknown to the installer at the time of
bidding. We recover marginal costs and markup for each bid using the following procedure:

1. First, we estimate each installer’s entry probability for each project. An installer’s entry
probability depends on both the installer’s own characteristics and the characteristics of
the project {wj, zi}. We approximate the conditional probability of entry by estimating
the following logistic regression model:

Prob(Enterij) = z′iγz + w′jγw (8)

We assume a seller is a potential entrant for auction i if they entered at least one auction
within the same CBSA in the same year as project i.

2. Estimate the conditional probability that a seller who enters auction i o�ers a particular
set of non-price characteristics xij . Speci�cally, the non-price characteristics of the bid
indicate the quality of the solar panels o�ered which include the following categories:

25



“Excellent”, “Very Good”, “Good”, “Fair/Poor”, and “Missing Rating”. We approximate
the conditional probability of o�ering non-price characteristics xij using the following
multinomial logistic regression using the full sample of observed bids:

Prob(xij) = z′iθz + w′jθw. (9)

3. Estimate the expected bid price that each entrant j would o�er conditional on entering
an auction i and having a vector of non-price characteristics xij using the following
linear regression from the full sample of observed bids:

Bij = z′iψz + w′jψw + x′ijψx + εij. (10)

4. Next, we use the conditional probabilities estimated in Step 1 to simulate the entry
decisions for auction i for each potential entrant in N (zi).

5. Simulate the set of non-price characteristics for each of the simulated entrants using
Equation 9.

6. Simulate the bid price for each simulated entrant as the B̂ij + ε̂ij . In particular, we
simulate the bid price as the predicted value from Equation 10 plus a residual drawn
from the error distribution of the regression.26

7. Evaluate the choice probabilities Probij and demand semi-elasticities ∂Probij
∂Bij

inside the
integrals given the bid prices and the competitor’s observed characteristics.

8. Repeat the second through fourth step S times each and take the average of all the sim-
ulated choice probabilities, and simulated demand semi-elasticities to obtain estimates
for the two expectations.27 Let s denote the simulation iteration, we de�ne the relevant
expressions as:

P̂ij =
1

S

S∑
s=1

Probsij,
∂̂Pij

∂Bij

=
1

S

S∑
s=1

∂Probsij
∂Bij

(11)

9. Finally, use the average choice probabilities, and average demand semi-elasticities from
the previous step to calculate the markup portion of each bid. �e markup term for �rm
j in auction i is equal to − P̂ij

∂̂Pij
∂Bij

. Once we have an estimate of the markup term, the

�rm’s FOC provides a one-to-one mapping that we can use to recover the marginal cost

26In the baseline model we assume that εij is i.i.d and normally distributed. We experimented with more
�exible error distributions and found that they had li�le impact on the estimated markups and costs.

27We simulate 100 iterations of each auction type.
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of each project in the data:

ĉij = Bij +
P̂ij

∂̂Pij

∂Bij

(12)

�is procedure allows us to infer a project-speci�c marginal cost for every bid in the data.
With these estimates, we can explicitly evaluate di�erences in average markups and marginal
costs across projects belonging to di�erent demographic groups.

6 Results

We show a selected subset of the parameter estimates pertaining to buyers’ utility in Table 2.
�e le�-hand panel shows estimates of the price sensitivity coe�cients that we allow to vary
by the income and race/ethnicity of the household head. �e constant term within the set of
price coe�cients represents the price sensitivity for White households in the highest income
quintile. Recall, the highest income quintile corresponds to households living in census block
groups with a median income above $137,000. �us, the interaction terms are interpreted as
shi�s in price sensitivity relative to high-income White households. We �nd the price co-
e�cients associated with the third and fourth income quintiles—corresponding to incomes
between $86,000 to $137,000 are small and not statistically signi�cant. �e coe�cient for the
second income quintile is larger in magnitude but is also not statistically signi�cant. On the
other hand, the interaction for the �rst income quintile—including incomes below $64,000—is
both negative and statistically signi�cant. �e demand estimates also indicate notable hetero-
geneity in price sensitivity across race and ethnicity. While White households and Asian (and
Paci�c Islander) households exhibit similar price sensitivity, our results suggest Black and
Hispanic households are relatively more price sensitive, although the interaction associated
with Black households is not quite statistically signi�cant (t-stat of 1.1).
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Table 2: Demand Estimates

Nesting Parameter Household Survey Responses (× Inside Option)

λ 0.391 (0.025) Log(Electricity Bill) −0.553 (0.036)
Price Coe�cients Has O�-Platform �otes {0,1} 0.267 (0.036)
Constant −0.740 (0.065) Roof Age: <= 20 years {0,1} 0.201 (0.128)
× Income - �intile 1 −0.113 (0.028) Roof Age: > 20 years {0,1} 0.048 (0.133)
× Income - �intile 2 −0.039 (0.025) Purchase Preference: Loan/Lease {0,1} 0.771 (0.132)
× Income - �intile 3 −0.0003 (0.023) Purchase Preference: Cash Purchase {0,1} 0.983 (0.130)
× Income - �intile 4 0.005 (0.022) Equipment Preference: Premium Technology {0,1} 0.153 (0.049)
× Black Owner −0.121 (0.113) Equipment Preference: Value {0,1} 0.193 (0.048)
× Hispanic Owner −0.213 (0.038)
× Asian/PI Owner −0.005 (0.021)

Fixed E�ects Log Likelihood

CBSA FEs Yes -21155.34
Year FEs Yes
Panel Rating FE Yes
Permanent Installer FE Yes
Transient Installer Star Rating FE Yes
Transient Installer # of Reviews FE Yes

Notes: �e utility speci�cations include CBSA, year, panel rating, and permanent seller �xed e�ects. Permanent
sellers are those that submi�ed over 1000 total bids. For transient sellers, we include a set of �xed e�ects for
the installer’s star rating and the installer’s number of reviews. �e right side of the table shows the coe�cients
associated with the household survey responses, which we allow to shi� the utility of all of the installation bids
(e.g. the inside options). For the survey responses that include dummy variables, the omi�ed group represents
buyers that did not answer the survey question. For example, the ”Roof Age: <= 20 years” variable is relative
to buyers that did not report the age of their roof. Standard errors are in parenthesis.

Table 3: Mean Price Elasticities Across Demographics

Income �intile Mean Own-Price Elasticity Avg Number of Bids
1 -1.81 3.99
2 -1.67 4.19
3 -1.59 4.41
4 -1.58 4.52
5 -1.61 4.59

Race/Ethnicity Mean Own-Price Elasticity Avg Number of Bids
Asian, Paci�c Islander -1.65 4.69

Black -1.92 2.88
Hispanic -2.09 4.62

White -1.6 4.28

Notes: �e mean own-price elasticity are calculated based of the realized
choice sets and do not account for ex-ante uncertainty in seller participation.
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�e right-hand side of Table 2 shows how the household-speci�c survey responses shi� the
utility that buyers obtain from each bid relative to the outside option. Notably, buyers with
higher electricity bills obtain lower utility. Recall that utility is measured per unit of capacity
and households with higher electricity expenditures will tend to be quoted for larger systems.
If we transform utility to account for di�erences in system capacity, households with higher
electricity usage obtain higher total utility despite obtaining lower utility per unit of capacity.
We also �nd that buyers who report their roof age as being less than 20 years old receive higher
utility compared to buyers that did not respond to that survey question (the omi�ed group).
We do not �nd a statistically signi�cant di�erence between buyers that report having a roof
older than 20 years old relative to non-respondents. Perhaps surprisingly, we discover similar
coe�cients for buyers that prefer to purchase a solar installation with cash as buyers that
prefer to �nance their solar installation with a loan or lease. We also �nd similar willingness-
to-pay among buyers that report a preference for value-based technology and buyers with a
preference for high-performance or aesthetically pleasing solar panels. However, we �nd that
answering the survey question about �nancing preferences and the survey question about
equipment preferences correspond to a higher willingness to pay relative to the group of
non-respondents.

We also report the mean price elasticities separately for each income and racial group in Ta-
ble 3. We show the lowest income households are 12.5% more price elastic than the highest
income households—with a mean own-price elasticity of 1.6 compared to 1.8 for the high-
est income group. Black households and Hispanic households are approximately 20% and
30% more elastic than White households, respectively. �ese results suggest that the gaps
in close rates and reported solar adoption between White and minority households and the
gap between low and high-income households are partly explained by di�erences in price
sensitivity. However, Table 3 reiterates that these demographic groups receive substantially
di�erent bids from installers on average. For example, Black households obtain almost 40%
fewer bids than White households (unconditionally). �erefore, households’ choice sets may
also partly explain the disparity in purchase rates.

6.1 Marginal Costs and Markups

We now turn to the supply side to investigate di�erences in markups and marginal costs
across households. �e supply-side model allows us to disentangle potential mechanisms
that could explain price di�erences in solar installation bids across households. �e results
from the previous section indicate that Black and Hispanic households tend to be more price
elastic than White households. �erefore, these di�erences in preferences across households
should translate into di�erences in the sellers’ optimal price markup across households. On
the other hand, heterogeneity in underlying installation costs may also explain the price vari-
ation across households.
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Figure 4: Marginal Cost Distributions by Race and Income

(a) Black MC and White MC (b) Hispanic MC and White MC

(c) Asian/PI MC and White MC (d) High Income MC and Low Income MC
Notes: Each panel compares the distribution of marginal costs in dollars per wa� across all bids submi�ed to
two designated groups of households. For example, the dark blue distribution in Panel 4a shows the distri-
bution of estimated marginal costs across all bids submi�ed to Black households, and the red distribution in
Panel 4a shows the distribution of marginal costs associated with all bids o�ered to White households.

Figure 4 compares the distribution of installation marginal costs across demographic groups.
Figure (4a)-(4c) contrasts the estimated marginal costs distributions for bids made to White
households, with the distribution for Black, Hispanic, and Asian households, respectively.
�ese �gures show the marginal cost distribution for Black households is shi�ed to the right
of the distribution for White households indicating that the higher bid prices obtained by
Black households cannot fully be explained by markup incentives. A similar pa�ern emerges
in Figure 4b, which illustrates that marginal costs for Hispanic households also tend to be
higher relative to White households. In panel 4c, we see that the estimated marginal cost
distribution for API households looks very similar to the distribution for White households.
Finally, Figure 4d shows that marginal costs for low-income households are slightly higher
than marginal costs for high-income households.

While these distributions suggest substantial di�erences in the underlying cost structure across
demographic groups, Figure 4 shows only the unconditional distribution of marginal costs
without controlling for any other variables that may help to explain the heterogeneity. In
Table 4, we run a series of regressions to be�er understand how installation markups and
marginal costs vary across household demographics. In particular, we show in Column (3)
that log markups vary across income and race/ethnicity a�er controlling for market �xed ef-
fects, installer �xed e�ects, hardware quality, and each household’s survey responses includ-
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Table 4: Implied Markups and Marginal Costs by Income and Race

Dependent variable:

Log(Optimal Markup) Log(Implied Marginal Cost)
(1) (2) (3) (4) (5) (6)

Income - �intile 1 −0.170 −0.135 0.143 0.118
(0.001) (0.0002) (0.001) (0.001)

Income - �intile 2 −0.072 −0.050 0.066 0.050
(0.0005) (0.0002) (0.001) (0.001)

Income - �intile 3 −0.010 −0.0004 0.011 0.003
(0.0005) (0.0002) (0.001) (0.001)

Income - �intile 4 0.004 0.008 −0.002 −0.005
(0.0005) (0.0002) (0.001) (0.001)

Black Owner −0.178 −0.134 0.185 0.146
(0.001) (0.001) (0.004) (0.004)

Hispanic Owner −0.275 −0.246 0.185 0.160
(0.0005) (0.0003) (0.001) (0.001)

Asian/PI Owner −0.00002 −0.007 −0.010 −0.004
(0.0004) (0.0002) (0.001) (0.001)

Observations 243,120 243,120 243,120 243,116 243,116 243,116
R2 0.713 0.813 0.942 0.555 0.556 0.579

Notes: �e dependent variable in the �rst three columns is the natural log of the estimated
optimal markup ($/wa�), and the dependent variable in the last three columns is the natu-
ral log of the estimated marginal cost. Four bids had negative marginal cost estimates are
dropped. Each regression includes all other non-price variables that enter the buyer’s util-
ity function including panel brand dummies, installer controls, CBSA �xed e�ects, year
�xed e�ects, and controls for the household’s survey response.

ing their monthly electricity expenditure. �ese results imply that mean optimal markups
for bids made to Black households is approximately 13% lower relative to observably simi-
lar White households, the mean optimal markup for Hispanic households is 25% lower than
for White households, and the optimal markup for Asian households is nearly the same as
for White households. With respect to income, the mean optimal markup for bids made to
households in the lowest income quintile is roughly 14% below the optimal markup for an
observably similar household in the highest income quintile. �e coe�cient estimates from
the markup regressions stand in contrast with the descriptive bid price pa�erns that we pre-
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sented in Section 3, which showed that per-unit bid prices tend to be higher for minority and
lower-income households. �erefore, the implied marginal costs must be larger on average
for Black and Hispanic households relative to similar White households. In the sixth column
of Table 4, we show results for an analogous regression using log marginal cost as the de-
pendent variable. �ese results show implied marginal costs are 15% higher for Blacks than
Whites, 16% higher for Hispanics than Whites, and roughly the same for APIs and Whites.
Similarly, we �nd mean marginal cost for the lowest income group is 12% above the marginal
cost for the highest income group.

�ese results document considerable heterogeneity in marginal costs across households. In
particular, low-income and minority households face relatively higher solar installation costs.
�is indicates that underlying supply conditions contribute to the adoption disparities we ob-
served in Section 3. �ere are a few reasons why marginal costs could vary systematically
across household demographics. We have seen that systematic di�erences in labor, materi-
als, and transportation costs across households may exist. For example, Table 1 showed that
low-income and minority households tend to live further away from installers which could
plausibly explain some of the estimated disparities in installation costs. In addition, house-
holds with lower income o�en buy smaller PV arrays which results in higher per-wa� prices
due to �xed costs like permi�ing and inspection fees. Another possibility is that installers
have a taste-based preference against certain types of households (or certain neighborhoods)
and adjust their bid prices to re�ect these tastes. For example, some sellers may prefer to serve
certain households or neighborhoods- either because of intolerant views, crime rates, or other
variables correlated with household demographic characteristics. If these preferences are fac-
tors in �rms’ bids, they would be incorporated implicitly into our marginal cost estimates.

6.2 Consumer Surplus

Disparities in installation costs have important implications for disparities in consumer wel-
fare and solar PV adoption. Namely, we previously show in Table 2 that Black, Hispanic,
and low-income households tend to be relatively more price sensitive when shopping for so-
lar. Furthermore, our estimates of marginal costs for these households are also higher (on
average). In tandem, these results help explain the relatively low platform close rates (and
survey-reported adoption rates) among these groups of households.

We use our demand estimates to evaluate disparities in expected consumer surplus obtained
by the households in our sample. Speci�cally, we calculate the mean expected consumer
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surplus for a demographic group G as follows

CSG =
1

NG

∑
i∈G

qi
αG

log
(∑
j∈Ki

exp(uij)
)

(13)

=
1

NG

∑
i∈G

qi
αG

log
(∑
j∈Ki

exp(BijαG + x′ijβ + w′jγ + δi)
)

where G indicates the set of households in demographic group G, and NG represents the
number of households in that group. �is formulation explicitly allows the price coe�cient,
αG, to vary across demographic groups. Here, qi is the mean system size bid submi�ed to
household i—this term scales utility to adjust for di�erences in system size across households.

�e top panel of Table 5 reveals stark di�erences in expected consumer surplus across house-
hold income. �e second column shows the expected consumer surplus per unit of solar
capacity, based on the mean system size quoted to each household. �e fourth column shows
the total expected consumer surplus for each group, accounting for di�erences in system ca-
pacity across income groups. We see that the expected total consumer surplus for the lowest
income quintile ($824) is less than half of the surplus obtained by the highest income quin-
tile ($1,756). Similarly, the bo�om panel indicates that total consumer surplus is highest for
Asian and White households ($1,567 and $1,411). In contrast, Black households obtain 72%
less surplus than White households ($402) and Hispanic households obtain 56% less surplus
($615).

Appendix Table A.5 indicates that the disparities in consumer surplus across income and race
largely persist a�er controlling for the household’s geographic market, electricity expendi-
ture, and other observables. In this table, we report results from regressions with the log of
consumer surplus as the dependent variable and include controls for all variables that enter
the demand model that varies across households. Even a�er adding this set of controls, the
coe�cient estimates indicate consumer surplus for the bo�om income quintile is approxi-
mately 49% lower than the top income quintile. Moreover, the regression shows that Black
households’ consumer surplus is 65% lower than comparable White households and Hispanic
households’ surplus is 63% lower, all else equal. On the other hand, Asian households get
roughly equal surplus as White households.

6.3 Decomposing Disparities in Consumer Surplus

�e results in the previous subsection highlight the large disparities in consumer surplus
across household demographics. However, the consumer estimates alone are not particularly
informative about the mechanisms that explain these disparities. �e evidence in Section 3
and 6.1 shows that low-income and minority households obtain fewer bids and face higher
installation costs suggesting that supply-side factors may partly explain the income and racial
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Table 5: Mean Expected Consumer Surplus Across Income and Race

Panel A: Income �intile

Income �intile Bids CS/wa� ($/wa�) Mean System Size (kW) Total CS ($)
1 3.99 0.1 9.03 824.18

(1.93) (0.1) (4.22) (751.84)
2 4.19 0.15 8.75 1149.54

(1.94) (0.13) (4.16) (981.47)
3 4.41 0.19 8.62 1460.46

(1.91) (0.16) (4.07) (1173.61)
4 4.52 0.22 8.61 1622.55

(1.86) (0.17) (4.11) (1261.6)
5 4.59 0.22 8.86 1755.63

(1.77) (0.16) (4.26) (1292.55)

Panel B: Race/Ethnicity

Race/Ethnicity Bids CS/wa� ($/wa�) Mean System Size (kW) Total CS ($)
Asian, Paci�c Islander 4.69 0.24 7.1 1567.36

(1.78) (0.17) (3.5) (1195.34)
Black 2.88 0.05 9.18 401.97

(1.64) (0.05) (4.07) (460.44)
Hispanic 4.62 0.08 8.38 615.06

(1.86) (0.07) (3.89) (537.28)
White 4.28 0.18 9.08 1411.47

(1.9) (0.15) (4.23) (1171.7)
Notes: �e second column reports the mean number of bids obtained across all households within

the group. �e third column reports the mean expected consumer surplus ($/wa�) across all house-
holds within the group. �e fourth column shows the mean system size quoted to all households in
the group; �rst, we calculate the mean capacity bid for each household and then we average that �g-
ure across households. �e total consumer surplus for each household is calculated at the expected
consumer surplus per unit multiplied by the mean capacity bid for that household. �e standard
deviations of each variable are listed in parentheses.

disparities in consumer surplus. However, the demand estimates in Table 2 showed that low-
income and minority households also tend to be relatively more price sensitive, which im-
plies that the disparities in consumer surplus might be largely explained by di�erences in
willingness-to-pay for solar PV.

We develop a decomposition method inspired by Oaxaca (1973) and Blinder (1973) to be�er
understand how supply and demand factors separately a�ect disparities in consumer surplus.
First, consider the di�erence in consumer surplus between two groups—demographic group
A and demographic group B:

∆̂CS = CSA − CSB. (14)

where CSA and CSB represent the mean expected consumer surplus for groupA households
and group B households, respectively. Analogous to Figure 1, we decompose the di�erences
∆̂CS into three components: (1) the demand component—the share of the CS gap explained by
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di�erences in price sensitivity across the two groups, (2) the supply component—the portion of
the CS gap explained by di�erences in choice sets across the two groups, and (3) the interaction
component. More explicitly, we expand ∆̂CS as:

∆̂CS =
[ 1
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. (15)

In the above expression, we write the portion of utility that household i obtains from the
non-price characteristics of option j concisely as X′ijθ ≡ x′ijβ + w′jγ + δi. In addition, qi is
the mean system capacity bid submi�ed to household i—this term scales utility to adjust for
di�erences in system size across households. �e �rst line of Equation 15 represents the por-
tion of the CS gap explained by di�erences in price sensitivity between demographic group
A and demographic groupB. More speci�cally, the �rst term in the �rst line is counterfactual
mean consumer surplus if all households in group A observed the same choice set as group
B. �e second term in the �rst line re�ects the mean expected CS across all households in
group B evaluated based on the observed choice set of group B. �e supply component of
the consumer surplus gap (second line of Equation 15) represents the di�erence in expected
consumer surplus obtained from Group A’s and Group B’s observed choice sets, holding
price sensitivity �xed at Group B’s price sensitivity. Intuitively, the supply component en-
compasses the disparities created by di�erences in the number of bids obtained by the two
groups, di�erences in bid prices, and di�erences in installer quality. �e last term on the third
line represents the residual portion of the consumer surplus gap which arises from changing
both the price sensitivity and choice sets of the two groups simultaneously.

We �rst use Equation 15 to decompose the disparity in consumer surplus between high- and
low-income households and then to decompose the gap between White and minority house-
holds. Speci�cally, the top panel of Table 6 decomposes the CS gap between households in
the highest income quintile and households in the lowest income quintile. We see that the ex-
pected consumer surplus is $931 larger for the high-income group than the low-income group.
We see that 37% ($340) of the consumer surplus gap is explained by low-income households
being more price sensitive. Interestingly, a larger 43% share ($405) of the consumer surplus gap
is explained by the supply component—di�erences in the choice sets that each group obtains.
Recall, the highest income quintile received additional bids compared to the lowest quintile,
which contributes to the observed gap in consumer surplus. �e remaining 20% ($186) of the
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consumer surplus gap is explained by the interaction component.

In the next panel of Table 6, we decompose the gap between White and Black households.
�e average White households obtain $1,010 more consumer surplus than the average Black
Household. Although Black households are more price sensitive than White households, our
decomposition shows the di�erence in price sensitivity between Black and White Households
accounts for only 18% ($187) of the gap in consumer surplus across these groups; thus, the
price sensitivity alone cannot explain the majority of the gap. �e supply component explains
the majority ($568) of the White-Black consumer surplus gap. Recall, that Black households
obtain 1.4 fewer bids on average than White households–a 33% reduction–which indicates that
Black households receiving more restricted choice sets than White households contributes to
a substantial portion of the CS gap. Notably, the White-Black decomposition estimates are
less precise due to the relatively small number of Black households in our sample.
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Table 6: Decomposition of Consumer Surplus Gap by Income and Race

Panel A: High-Low Income Consumer Surplus Decomposition
Estimate SE

Di�erence in Mean Consumer Surplus ($) 931.45 (170.57)
Demand Component ($) 340.54 (100.69)
Share Explained by Demand Component 0.37 (0.06)
Supply Component ($) 404.77 (73.64)
Share Explained by Supply Component 0.43 (0.08)
Interaction Component ($) 186.13 (50.86)
Share Explained by Interaction Component 0.2 (0.03)

Panel B: White-Black Consumer Surplus Decomposition
Estimate SE

Di�erence in Mean Consumer Surplus ($) 1009.5 (215.75)
Demand Component ($) 186.66 (155.65)
Share Explained by Demand Component 0.18 (0.17)
Supply Component ($) 568.04 (218.9)
Share Explained by Supply Component 0.56 (0.41)
Interaction Component ($) 254.81 (213.9)
Share Explained by Interaction Component 0.25 (0.24)

Panel C: White-Hispanic Consumer Surplus Decomposition
Estimate SE

Di�erence in Mean Consumer Surplus ($) 796.41 (138.85)
Demand Component ($) 542.99 (109.1)
Share Explained by Demand Component 0.68 (0.04)
Supply Component ($) 123.6 (27.03)
Share Explained by Supply Component 0.16 (0.04)
Interaction Component ($) 129.83 (28.93)
Share Explained by Interaction Component 0.16 (0.01)

Panel D: White-Asian/PI Consumer Surplus Decomposition
Estimate SE

Di�erence in Mean Consumer Surplus ($) -155.89 (99.6)
Demand Component ($) 25.67 (106.75)
Share Explained by Demand Component -0.16 (4.98)
Supply Component ($) -178.43 (35.15)
Share Explained by Supply Component 1.14 (4.39)
Interaction Component ($) -3.12 (13.22)
Share Explained by Interaction Component 0.02 (0.59)

Notes: �e second row of each panel show the mean consumer surplus gap between the two groups of house-
holds (e.g. White mean consumer surplus minus Black mean consumer surplus). �e middle section of each
panel decomposes the gap in consumer surplus into a portion explained by price sensitivity and a portion that is
unexplained by price sensitivity. �e top row describes the reference group used to measure the decomposition.
�e bo�om section of each panel shows the gap in the mean number of bids received across the two groups.
Bootstrapped standard errors are in parentheses.
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We carry out the analogous decomposition of the gap in CS between White and Hispanic
Households in Panel C of Table 6. We �nd a sizeable $796 gap in expected consumer surplus
between White and Hispanic households on average. However, in contrast to the White-Black
gap, we �nd di�erences in demand account for the majority (68%) of the White-Hispanic CS
gap. Recall, that Hispanic households are more price elastic than White households, so if
the two groups obtain equivalent choice sets, White households will obtain higher consumer
surplus. Importantly, Hispanic and White households obtain a similar amount of bids from
installers. Hence, di�erences in price sensitivities between White and Hispanic households
explain most of the CS gap. �e supply component and the interaction component each ex-
plain 16% of the consumer surplus gap.

Finally, Panel D of Table 6 shows the decomposition in the CS gap between White and Asian
(and Paci�c Islander) households. Asian and White Households obtain nearly the same mean
CS, with Asian households obtaining $156 more surplus than White households on average.
�e point estimates from the demand model show that Asian households are slightly more
price sensitive than White households, but the di�erence is small in magnitude and is not sta-
tistically signi�cant. Moreover, because the overall gap in consumer surplus between the two
groups is quite small, all of the decomposition estimates are also very noisy and statistically
indistinguishable from one another.

6.4 Eliminating Consumer Surplus Disparities through Prices

�e previous sections document substantial gaps in consumer surplus across socioeconomic
and demographic groups in the residential solar PV market. Consequently, policymakers have
expressed interest in cra�ing policies to reduce distributional inequities in the solar PV mar-
ket and in related markets. For example, the EPA launched the “Solar for All” initiative in 2023
that will award up to 60 grants to states, territories, Tribal governments, municipalities, and
nonpro�ts to expand the number of low-income and disadvantaged communities to invest in
residential solar energy (Environmental Protection Agency, 2023). In addition, the In�ation
Reduction Act (IRA) proposed a low- and middle-income (LMI) adder that o�ers supplemental
tax credits of 10 to 20 percent, in addition to the standard Investment Tax Credit (ITC), for
small solar and wind projects (Internal Revenue Service, 2023). �ese projects must either
meet environmental justice standards at a community level or satisfy income requirements
at a residential scale.28 Finally, California’s Low-Income Weatherization Program o�ers el-
igible households subsidies that cover the entire cost of solar installations, solar hot water
heaters, heat pump technology, and other energy e�ciency retro�ts (California Department
of Community Services Development, 2016). A common theme across all of these policies is

28According to the IRA, those who own projects situated in impoverished communities or on Indian Land
are eligible for a further 10 percent increase in tax credits. Moreover, project owners who cater to a�ordable
housing residents or who dedicate a portion of their projects to serving low-income customers are entitled to an
additional tax credit boost of 20 percent.
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to o�er subsidies or grants that reduce the upfront cost of installing solar for low-income and
disadvantaged households.

Motivated by these policies, we evaluate the price adjustment needed to eliminate disparities
in consumer surplus across di�erent demographic groups. In particular, we calculate how
much each bid price would have to change to equalize expected consumer surplus across two
groups if all else was held equal (i.e., each buyer’s choice set).

Table 7: Price Adjustments Required to Close Consumer Surplus Gaps

Group

Uniform Price
Adjustment

($/wa�)

Mean Price
A�er Adjustment

($/wa�)

Mean Consumer
Surplus A�er

Adjustment ($)

Base: High Income (Q5) 0 2.13 1755.63
Comparison: Low Income (Q1) -0.81 1.32 1755.63
Base: White 0 2.07 1411.47
Comparison: Black -1.27 0.79 1411.47
Base: White 0 2.07 1411.47
Comparison: Hispanic -0.77 1.3 1411.47
Base: White 0 2.07 1411.47
Comparison: Asian/PI 0.13 2.2 1411.47

Notes: �e second column calculates uniform change to all bid prices (net price a�er the ITC) that would imply that
the base group (e.g., high-income households) and the comparison group (e.g., low-income households) obtain equal
expected consumer surplus. �e third column reports the mean bid for each group a�er the price adjustment. �e last
column reports the expected consumer surplus for each group a�er implementing the uniform bid price adjustment.

�e top portion of Table 7 considers the top income quintile of households as the baseline
group, and the lowest income quintile as the comparison group. We solve for the (uniform)
increment to low-income households’ bid prices that would result in the same level of ex-
pected consumer surplus as the high-income households.29 We see that if each bid submi�ed
to a low-income household decreased by $0.81 per wa�–approximately 38%—then low-income
households would obtain the same expected consumer surplus as the high-income house-
holds. �e lower portions of the table calculate the changes to prices that would eliminate the
racial gaps in expected consumer surplus. We �nd that a massive price reduction of $1.27 per
wa� (62%) would be necessary to eliminate the gap in consumer between White and Black
households, and a $0.77 per wa� (37%) decrease would be required to eliminate the gap be-
tween White and Hispanic households. Finally, prices submi�ed to Asian and Paci�c Islander
households would need to rise by $0.13 per wa� to equate the expected consumer surplus
with White households, since Asian households obtain slightly higher consumer surplus than
White households.

�e above results underscore that in the short-run relatively large subsidies or grants may
be necessary to eliminate disparities in consumer surplus and solar PV adoption that we cur-

29All prices are reported as the net price a�er incorporating the 30% ITC.
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rently observe. For instance, our results suggest that the IRA LMI adder of 10-20% may not be
su�cient to eliminate the gap in consumer surplus between the highest and lowest-income
households in our sample. Whereas, programs like the California Low-Income Weatheriza-
tion program—which o�ers free solar installations to eligible households—may be more than
su�cient to close the gap between the highest and lowest-income households in our sample.

An important caveat of this exercise is that it does not provide insights about longer-run
changes in seller behavior that may be caused by targeted subsidies or grants. In the longer
run, targeted subsidies and grants may encourage more installer entry and bids submi�ed
to low-income households. �ese longer-run changes in entry and participation could fur-
ther help to reduce welfare disparities in the solar PV market and other related markets. In
addition, our calculations only consider changing prices of bids made to buyers through the
online platform and therefore do not incorporate changes in consumer surplus that buyers
may accrue from o�ine solar installers through targeted subsidy programs.30

7 Conclusion

In this paper, we document signi�cant distributional disparities across buyers on a leading
online marketplace for residential solar installations. Our �ndings indicate that low-income,
Black, and Hispanic buyers are less likely to install solar conditional on visiting the platform.
Consequently, these households derive substantially lower levels of consumer surplus from
the market. Our research adds to a growing body of research showing that low-income and
other disadvantaged households are heavily underrepresented in the adoption of new energy
technologies. Consequently, these households are capturing only a small share of government
tax credits and other subsidies commonly o�ered for these emerging technologies.

We contribute to the literature by leveraging rich data on sellers’ bids to further investigate the
mechanisms contributing to the adoption gap and corresponding welfare disparities. We show
that the adoption disparities are partially explained by demographic di�erences in willingness
to pay for the technology, however, much of this gap stems from supply-side factors that
materialize as higher prices and fewer bids to disadvantaged groups.

Recent environmental policy discussions highlight an increased focus on ensuring that social
bene�ts are distributed equitably. In the context of climate policy, this means that the harms
from global warming shouldn’t be borne disproportionately and that the rewards from green
capital investments should be shared more broadly among the population. Our �ndings sug-
gest that o�ering targeted subsidies to low-income households—such as the LMI Adder in the
In�ation Reduction Act—can help mitigate welfare disparities within our sample of potential
solar buyers. However, we �nd that these subsidies would likely need to be relatively large

30Importantly, in all of the calculations in Table 7 we maintain the normalization that buyers obtain zero
utility from choosing the outside option.
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to eliminate the consumer surplus disparities across income groups. Our decomposition re-
sults are suggestive that supply-side government policies aimed at reducing the barriers to
entry for �rms in underserved and disadvantaged communities may complement consumer
subsidies, leading to a reduction in the gaps in adoption and consumer well-being. Similar
supply-side instruments may be available to online platforms themselves, which may be able
to implement policies that adjust the fees or commissions charged to installers for projects
located in underserved neighborhoods.

�ere are a number of important caveats to consider when interpreting our results. First,
while our data provides novel insights about buyers’ and sellers’ behavior in the residential
solar PV market, our analysis is inherently limited to households that have selected to use the
EnergySage platform to search for quotes. �e individuals in our sample, have higher incomes
and are more likely to be White relative to the general U.S. population. One reason for these
pa�erns is that home ownership is typically a prerequisite for purchasing a solar PV system
and low-income, Black and Hispanic households are more likely to rent their homes. By study-
ing individuals that have already selected to shop for solar, our results are likely to understate
the extent of welfare disparities that exist across the broader population. �us, understanding
demographic di�erences in awareness and consideration of clean technology adoption is an
important topic for future work. Second, our results demonstrate that low-income and Black
households obtain relatively fewer bids and higher per-unit bid prices. However, we are not
able to fully determine the extent that these pa�erns re�ect taste-based discrimination ver-
sus di�erences in true underlying costs of providing installation services to these households.
Our research re�ects a �rst step in understanding the mechanisms behind these supply-side
disparities, including providing descriptive evidence that sellers are likely to locate closer to
high-income and White households. However, apart from location, we know relatively li�le
about the sellers, so research leveraging detailed seller information to more accurately ex-
plain the reasons behind any observed deviation in pricing across racial and income groups
presents an important opportunity for further research.
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A Online Appendix

A.1 Additional Tables and Figures

Table A.1: Count of Households and Bids by CBSA Location

CBSA Bid Count Bid Rank Household Count HH Rank

Los Angeles-Long Beach-Glendale, CA 32933 1 6264 1
San Diego-Carlsbad, CA 28779 2 5232 3
Oakland-Hayward-Berkeley, CA 27836 3 5650 2
Riverside-San Bernardino-Ontario, CA 21011 4 4016 5
Anaheim-Santa Ana-Irvine, CA 18684 5 3376 8
San Jose-Sunnyvale-Santa Clara, CA 17369 6 3337 9
Cambridge-Newton-Framingham, MA 14850 7 2944 11
Sacramento, CA 12654 8 2670 12
New York, NY 12571 9 3802 6
Washington-Arlington-Alexandria, DC-VA-MD-WV 12029 10 4538 4
Orlando-Kissimmee-Sanford, FL 11923 11 3047 10
Houston-�e Woodlands-Sugar Land, TX 11132 12 2571 13
Tampa-St. Petersburg-Clearwater, FL 9157 13 2511 14
Phoenix-Mesa-Sco�sdale, AZ 7008 14 3575 7
Chicago-Naperville-Arlington Heights, IL 5184 15 2478 15
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Table A.2: Summary Statistics by Income �intile

Income �intile Total

1 2 3 4 5
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Electricity Bill (USD/Month) 198.18 200.04 205.98 207.44 215.53 205.43
(98.75) (102.61) (107.48) (109.88) (115.73) (107.22)

Block Group Median Income (1K USD) 49.81 75.39 96.99 121.12 172.75 103.21
(10.43) (6.28) (6.12) (8.40) (29.73) (44.63)

Contract Preference Indicatos
Loan/Lease 0.37 0.36 0.34 0.31 0.23 0.32

(0.48) (0.48) (0.47) (0.46) (0.42) (0.47)
Purchase/Any 0.33 0.36 0.40 0.45 0.55 0.42

(0.47) (0.48) (0.49) (0.50) (0.50) (0.49)
Missing 0.30 0.28 0.26 0.24 0.22 0.26

(0.46) (0.45) (0.44) (0.43) (0.41) (0.44)
Roof Age Indicators
Less than 20 Years/Plan to Replace 0.62 0.63 0.63 0.64 0.64 0.63

(0.49) (0.48) (0.48) (0.48) (0.48) (0.48)
More �an 20 Years 0.09 0.10 0.11 0.12 0.14 0.11

(0.28) (0.30) (0.32) (0.33) (0.35) (0.32)
Missing 0.29 0.27 0.26 0.24 0.21 0.25

(0.46) (0.44) (0.44) (0.42) (0.41) (0.44)
Eqiupment Preference Indicators
Technology/A�rative/Production 0.27 0.27 0.28 0.30 0.30 0.28

(0.44) (0.45) (0.45) (0.46) (0.46) (0.45)
Value 0.33 0.33 0.33 0.34 0.35 0.33

(0.47) (0.47) (0.47) (0.47) (0.48) (0.47)
Missing/None 0.41 0.40 0.39 0.37 0.35 0.38

(0.49) (0.49) (0.49) (0.48) (0.48) (0.49)

Income �intile Lower Bound 11.625 64.242 86.146 107.298 137.321
Income �intile Upper Bound 64.239 86.141 107.287 137.270 250.001
Number of HHs 11205 11201 11203 11205 11197 56011
Proportion of HH 0.200 0.200 0.200 0.200 0.200 1.000
Number of Bids 44708 46983 49392 50644 51393 243120
Proportion of Bids 0.184 0.193 0.203 0.208 0.211 1.000

Notes: Means reported for each group with standard deviation in parentheses below.
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Table A.3: Summary Statistics by Race & Ethnicity

API Black Hispanic Unclassi�ed White Total
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Electricity Bill (USD/Month) 173.98 189.92 196.87 195.74 215.13 205.43
(89.78) (101.00) (98.51) (102.19) (110.98) (107.22)

Block Group Median Income (1K USD) 125.77 70.33 71.95 100.41 103.33 103.21
(47.23) (36.74) (26.98) (43.04) (43.50) (44.63)

Contract Preference Indicatos
Loan/Lease 0.26 0.33 0.42 0.34 0.32 0.32

(0.44) (0.47) (0.49) (0.47) (0.47) (0.47)
Purchase/Any 0.51 0.31 0.23 0.38 0.43 0.42

(0.50) (0.46) (0.42) (0.49) (0.50) (0.49)
Missing 0.23 0.36 0.35 0.28 0.25 0.26

(0.42) (0.48) (0.48) (0.45) (0.43) (0.44)
Roof Age Indicators
Less than 20 Years/Plan to Replace 0.62 0.58 0.56 0.61 0.65 0.63

(0.48) (0.49) (0.50) (0.49) (0.48) (0.48)
More �an 20 Years 0.15 0.08 0.10 0.11 0.11 0.11

(0.36) (0.26) (0.30) (0.32) (0.31) (0.32)
Missing 0.23 0.35 0.34 0.27 0.24 0.25

(0.42) (0.48) (0.48) (0.45) (0.43) (0.44)
Eqiupment Preference Indicators
Technology/A�rative/Production 0.27 0.28 0.27 0.29 0.28 0.28

(0.44) (0.45) (0.45) (0.45) (0.45) (0.45)
Value 0.40 0.27 0.28 0.33 0.33 0.33

(0.49) (0.44) (0.45) (0.47) (0.47) (0.47)
Missing/None 0.33 0.45 0.44 0.38 0.39 0.38

(0.47) (0.50) (0.50) (0.49) (0.49) (0.49)

Number of HHs 7336 678 4026 7781 36190 56011
Proportion of HH 0.131 0.012 0.072 0.139 0.646 1.000
Number of Bids 34370 1950 18618 33481 154701 243120
Proportion of Bids 0.141 0.008 0.077 0.138 0.636 1.000

Notes: Means reported for each group with standard deviation in parentheses below.

48



Table A.4: Bidding Disparities: Names versus Neighborhoods

(1) (2) (3) (4)
Log(Price) Log(Price) Log(Bids) Log(Bids)

Race/Ethnicity - Binary Measure

Black 0.0319*** -0.0609***
(0.0040) (0.0165)

Asian/Pac. Islander 0.0051*** -0.0206***
(0.0008) (0.0036)

Hispanic 0.0006 0.0100**
(0.0009) (0.0044)

Unclassi�ed 0.0041*** 0.0031
(0.0008) (0.0034)

Block Group Race/Ethnicity Prop.

Black 0.0504*** -0.0467***
(0.0031) (0.0127)

Asian/Pac. Islander 0.0035* -0.0283***
(0.0018) (0.0082)

Hispanic 0.0010 0.0196**
(0.0019) (0.0090)

Name Race/Ethnicity Prop.

Black -0.0001*** 0.0002
(0.0000) (0.0001)

Asian/Pac. Islander 0.0000*** -0.0001***
(0.0000) (0.0000)

Hispanic -0.0000 0.0001**
(0.0000) (0.0000)

Income�intiles

1st �intile 0.0144*** 0.0123*** -0.0490*** -0.0522***
(0.0009) (0.0010) (0.0041) (0.0045)

2nd �intile 0.0118*** 0.0103*** -0.0306*** -0.0330***
(0.0009) (0.0009) (0.0039) (0.0040)

3rd �intile 0.0066*** 0.0054*** -0.0101*** -0.0116***
(0.0008) (0.0008) (0.0036) (0.0037)

4th �intile 0.0050*** 0.0041*** -0.0031 -0.0039
(0.0008) (0.0008) (0.0035) (0.0035)

Observations 243120 243120 243120 243120
R-Sq 0.579 0.581 0.428 0.428
FE Year-by-CBSA Year-by-CBSA Year-by-CBSA Year-by-CBSA

Notes: Columns 1 and 3 report the baseline regression estimates from Equation 2 using our preferred binary
measure of the household race/ethnicity. Columns 2 and 4 report analogous regression results but omit the
binary race/ethnicity variables as regressors and instead includes as regressors: (1) the proportion of each
race/ethnicity group within the households’ block group and (2) the probability that each buyer’s name belongs
to a race/ethnicity group. �e dependent variable for columns 1-2 is the logarithm of the median bid price
($/wa�) o�ered to a household. �e dependent variable for columns 3-4 is the logarithm of the number of bids
the household receives.
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Figure A.1: Box Plots of Household Characteristics

(a) Income (b) Electricity Bill

Notes: Panel (a) compares the distribution of median income by race. Panel (b) compares the distribution of
monthly electricity bill by race.
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Figure A.2: Household Characteristics & Project Preferences by Race & Ethnicity

(a) Equipment Preference (b) Contract Preference

(c) Roof Age

Notes: Panels (a) and (b) compare household preference for equipment characteristics and type of contract by
race category. Panel (c) shows the distribution of household’s roof age by race category.
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Figure A.3: Household Characteristics and Prices

(a) Household Income (b) System Size (kW)
Notes: Panels (a) and (b) depict the average bid prices net of the ITC subsidy by household’s block group
median income and system size. Each point is calculated as the mean price among each quantile bin a�er
controlling for CBSA �xed e�ects. �e sample includes all bids submi�ed in our sample.
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Table A.5: Consumer Surplus by Income and Race

Dependent variable:

Log(Consumer Surplus)
Income - �intile 1 −0.592 −0.489

(0.010) (0.010)

Income - �intile 2 −0.284 −0.222
(0.010) (0.009)

Income - �intile 3 −0.080 −0.051
(0.009) (0.009)

Income - �intile 4 −0.019 −0.007
(0.009) (0.009)

Black Owner −0.812 −0.645
(0.026) (0.025)

Hispanic Owner −0.736 −0.631
(0.011) (0.011)

Asian/PI Owner 0.027 −0.003
(0.009) (0.009)

Observations 56,011 56,011 56,011
R2 0.641 0.642 0.664

Notes: �e dependent variable is the natural log
of households’ expected consumer surplus ($/wa�).
Each regressions include all other non-price vari-
ables that enter the buyer’s utility function includ-
ing panel brand dummies, installer controls, CBSA
�xed e�ects, year �xed e�ects, and controls for the
household’s survey response.
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