
Access to Alternatives: Increasing Roo�op Solar
Adoption with Online Platforms

Jackson Dorsey∗

June 2, 2021

Abstract

Residential solar installation prices, which are set on a case-by-case basis, remain both rel-
atively high and variable despite signi�cant declines in solar panel manufacturing costs. In
this paper, I estimate a structural model of the solar installation market to quantify mar-
ket power and to evaluate the welfare e�ects of connecting buyers and sellers through
an online platform. I �nd that the platform yields a $1,451 increase in consumer surplus
by increasing the number of installation bids each household receives. Households with
higher-valued homes a�ract relatively more bids and reap the largest bene�ts from the
platform. Counterfactual simulations yield two main results: 1) an increase from one to
�ve bids per project causes a 15.5% ($4,000) reduction in gross installation prices and a 33%
increase in the number of solar installations, and 2) the solar Investment Tax Credit—which
is scheduled to be eliminated in 2022—improves total welfare by mitigating market power
in addition to reducing pollution externalities from electricity generation.
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Online platforms o�er an increasingly common and potentially fruitful way to connect
buyers and sellers in markets where services are customized and priced on a case-by-case
basis.1 Examples include business-to-business services—computer programming, legal, and
marketing—and consumer services—auto repair, home contracting, and mortgages. In the ab-
sence of platforms, buyers in these markets must bear substantial indirect costs of searching for
and comparing quotes across potential sellers. �ese search frictions have implications for mar-
ket power—when collecting price quotes is costly for buyers, any seller asked to give a quote
can expect to be bidding against few or no other sellers, thereby giving that seller incentive
to charge a higher markup (Diamond, 1971; Stahl, 1989; Stigler, 1961). Moreover, sellers may
charge particularly high prices to consumer groups with high search costs or those that are less
price-sensitive (Allen et al., 2019). On the other hand, platforms collect and compile information
about each buyer’s characteristics, such as a desired project or task, and pass the data to a broad
set of sellers that can then submit bids via the platform. �us, platforms have the potential to
provide buyers access to more price quotes than they would otherwise obtain o�ine through
bilateral interactions with sellers. In this way, platforms can increase the number of transac-
tions completed and improve market e�ciency through several channels: connecting buyers
to be�er-matched sellers, connecting buyers to lower-cost sellers, or reducing seller markups
by increasing competition. In markets with positive externalities such as renewable energy,
energy e�ciency, and network/communications technologies, an increase in output will also
have additional public bene�ts.

In this paper, I measure the value of an online platform for a product with positive externalities—
roo�op solar photovoltaics (PVs)—and document how this value is distributed across consumers
and the public. I do this by estimating a structural model that incorporates households’ solar
installation choice and sellers’ strategically bidding on projects. First, I use the estimates to
quantify market power in the installation market. Second, I measure the platform’s e�ect on
consumers’ solar adoption choices and welfare. �ird, I use the model to evaluate counter-
factuals. In one series of counterfactuals, I measure the e�ects of changing the the number of
installation bids each household obtains on equilibrium prices, the number of solar installations,
consumer surplus, and environmental externalities. In another set of policy counterfactuals, I
assess the welfare impacts of the largest U.S. solar subsidy program, the Investment Tax Credit
(ITC), which is scheduled to be fully eliminated in 2022.

Understanding the e�ects of platforms on solar installation prices is both important and
policy relevant. Although solar prices have fallen, and installations have grown substantially
over the past decade, the price of an average solar installation still exceeds $20,000, and fewer
than 3% of U.S. single-family homes have a solar system (Barbose et al., 2019). High installation
prices cannot be explained by the hardware costs of the solar panels themselves. Figure 1

1For instance, Angie’s List, �umbtack, and HomeAdvisor provide platforms for most home and auto services.
Upwork, PeoplePerHour, Freelancer Map, and Guru enable online transactions for a wide range of professional
services. �ere are also many specialized platforms for particular services such as Chegg (tutoring), Envato Studio
(graphic design), Care.com (child and senior care), or Zebra (auto insurance).
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illustrates that hardware materials costs now account for less than 30% of the total price of
a U.S. residential solar installation (Barbose et al., 2019; Borenstein, 2017; Feldman, 2014; Fu
et al., 2016; O’Shaughnessy et al., 2019).2 �e balance of system cost, o�en called the “so� cost”
in the solar industry, includes installation labor, permi�ing, inspection, and interconnection
costs. Notably, the “so� cost” also includes installers’ markups. �e fact that so� costs make
up a relatively large portion of solar installation prices, and that these costs have been falling
relatively slowly over time, suggests that market power could be inhibiting residential solar
investments (O’Shaughnessy et al., 2019). �ere is a host of evidence showing that market
power is prevalent in the solar installation market. Pless and van Benthem (2019) develop a test
for the presence of market power by measuring the rate at which solar installers pass-through
subsidies to consumers; the authors’ estimates imply the presence of market power. Borenstein
(2017), Gillingham et al. (2016), and Nemet et al. (2016) show evidence that households with
high electricity rates and higher expected incomes pay more for solar installations, suggesting
that sellers engage in price discrimination. Notably though, many U.S markets now have dozens
or even hundreds of solar installers. �us, imperfectly competitive installation pricing is likely
enabled by high search costs. Platforms could therefore reduce installation prices by expanding
the number of installers considered by each potential solar buyer.

Figure 1: Residential Solar PV Installation Prices ($/Wa�)

Notes: Figure constructed using data from Barbose et al. (2019).

Imperfect competition also has important implications for the welfare impacts of govern-
ment subsidy programs. More speci�cally, the nature of competition in the installation market
will in�uence the share of subsidies that is passed through to end-consumer prices (Weyl and
Fabinger, 2013). If monopolistic sellers respond to subsidies by increasing gross prices, then
subsidies may only generate small increases in solar installations and associated environmen-

2Hardware costs include the panel, inverter, support structures, and electrical wiring.
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tal bene�ts. In this case, subsidies may even reduce overall welfare. On the other hand, it is
plausible that subsidies could increase welfare by simultaneously correcting for two prevailing
market distortions: 1) unpriced environmental externalities and 2) market power. With these
ambiguous predictions in mind, an empirical analysis is needed to evaluate whether govern-
ment subsidies are welfare improving.

To investigate counterfactual market outcomes and welfare in the solar PV market, I develop
a model that includes three stages. In the �rst stage, a solar installation project is announced.
Upon the project announcement, potential sellers learn about the project’s characteristics, such
as the location of the home seeking the solar installation, the household’s monthly electricity
use, and the market value of the home. Potential sellers decide whether to participate in the
auction by comparing the costs associated with preparing a quote to the expected marginal
pro�ts of bidding (Krasnokutskaya and Seim, 2011).3 �e expected pro�tability from partici-
pating and the expected number of bidders depends on the household’s characteristics. In the
second stage, participating sellers pay the bid preparation cost and learn their marginal cost
associated with installing the solar system for that particular household. �e participating sell-
ers then submit a price bid to maximize expected pro�ts. An optimal bid is a function of the
installer’s marginal cost, the household’s price elasticity, and expectations about the number of
competing bids for that project. In the �nal stage, the household observes the bids and chooses
one of the bidding sellers or the outside option—not installing a solar system or an o�-platform
installer. Notably, the auction allocation mechanism in this se�ing di�ers from a conventional
�rst-price auction. When making a choice, buyers can consider factors other than prices, such
as the installers’ ratings, experience, and hardware brand. �erefore, I estimate the buyer’s
choice rule because the allocation mechanism is unobserved. I build on and adapt methods
recently developed by Krasnokutskaya et al. (2019) and Yoganarasimhan (2015) to recover pa-
rameters in multi-a�ribute auction se�ings.4 �e innovation of my model is to account for
several key features of the solar market that have not been considered in the previous litera-
ture. Namely, I model both strategic bidding by solar installers, as well as imperfectly informed
buyers—buyers are only informed about installers that submit bids for their project.

I estimate the model using a novel data set that includes over 37,000 solar installation bids
made to over 10,000 households through an online platform. �e data is unique relative to most
other solar PV data used in the literature in a few ways. First, I can observe non-winning bids
and bids made to households that did not purchase a solar system. Observing the number of
quotes at the household level allows me to obtain more precise estimates of elasticities and
markups.5 I also observe considerable variation in the number of bids across households and
over time. I utilize this variation to identify how prices and buyer installation decisions change

3Expected marginal pro�ts of bidding are equal to the probability of being selected, multiplied by the installer’s
expected markup.

4�ese types of auctions have also been called beauty contest auctions. �ese auctions are similar to scoring
auctions but di�er in that the precise scoring rule is not announced to sellers.

5Goeree (2008) shows that demand curves are biased toward being too elastic under traditional models that
assume the buyers are fully informed about all sellers or products.
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with the number of bids per project.
I augment the raw platform data with detailed household-level demographic information.

�e platform collects and reports information about each household’s address and its average
monthly electricity expenditure.6 I supplement that information with marketing-research data
on each home’s market valuation and demographic variables like the age, race, and educational
a�ainment of the household head. One limitation of the raw platform data is that the sam-
ple may not represent the universe of potential solar buyers because households select into
using the platform. Consequently, the detailed household information is valuable for a few
reasons. First, I use the demographic data to show that platform shoppers appear relatively
similar to other solar adopters in the broader market based on observable characteristics. Sec-
ond, because I observe signi�cant variation in home values—ranging from $100,000 to over $2
million—I am able measure di�erences in seller participation and pricing across households of
di�ering wealth. �us, the detailed household information allows me to assess which types of
households bene�t most from using the platform.

Findings �e model estimates imply relatively high markups in solar installation pricing
and sizable bene�ts of using the online platform. I �nd that markups account for 45% of gross
installation prices.7 On the demand side, I also �nd that access to the platform increases con-
sumer surplus by an average of $1,451 per solar shopper, or about 8% of the average solar system
price. While all households experience some expected welfare gains, these gains di�er consid-
erably across markets and household demographics. �e platform generates a $1,156 gain in
consumer surplus for households in the bo�om quartile of home valuation, relative to a $1,476
gain for households in the top quartile. Households with higher valued homes a�ract more bids
through the platform and purchase larger solar systems, which contributes to the disparity in
the platform’s welfare impact.

�e �rst set of counterfactuals demonstrate that increasing the number of bids obtained
by each household has signi�cant impacts on consumer welfare and market outcomes. In the
counterfactuals, I vary the number of sellers bidding on each project and sellers update their
pro�t-maximizing bid prices accordingly. �e counterfactual exercise reveals that an increase
from one to �ve bids per project causes a 15.5% decline in gross sale prices, a $4,000 reduction
on a typical installation. �is �ve-fold increase in bids also promotes a 33% rise in the number of
solar installations, a 28% reduction in pollution damages, and a 360% increase in consumer sur-
plus. �ese �ndings underscore the potential bene�ts of reducing search frictions in negotiated
price markets.

�e second set of policy counterfactuals show the impact of eliminating the federal In-
vestment Tax Credit (ITC) on prices, the number of solar installations, and welfare. �e ITC
enables solar buyers to deduct 30% of the gross price of a solar installation from their federal
taxes; however, policymakers plan to eliminate the ITC in 2022.8 �e counterfactuals reveal

6�e physical addresses are observed by platform sta� but were not disclosed to the author for privacy reasons.
7�e gross price is the price before subsidies such as the Investment Tax Credit are applied.
8�e ITC will o�er a 26% subsidy in 2020, a 22% credit in 2021, and 0% subsidy in 2022 and beyond.
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that removing the ITC increases net sale prices by about 24%. As a result, solar installations
and the associated environmental bene�ts decline by 33% in the absence of the tax credit. �e
counterfactuals also reveal that eliminating the ITC reduces total welfare by 22%. Surprisingly,
I �nd that the most substantial bene�t of the ITC is that it reduces deadweight loss from the
exercise of market power. More speci�cally, each dollar spent on the ITC generates a $0.77 gain
in producer surplus9 along with a $0.80 gain in consumer surplus. �e subsidy increases market
participants’ rents by enabling more transactions where the buyer’s willingness-to-pay exceeds
the seller’s marginal cost than would occur without the policy. Moreover, the ITC promotes a
modest decrease in pollution externalities—pollution damages fall by $0.19 per subsidy dollar.
Taking all these factors together, I �nd that the policy increases total net welfare by $0.69 per
subsidy dollar a�er accounting for the cost of the subsidy.

�e results have several important implications for public policy. �e structural estimates
along with the �rst set of counterfactuals demonstrate that: 1) installer markups account for
a large share of solar installation prices, 2) access to the online platform increases consumer
surplus and solar adoption rates, and 3) access to additional bids is a key mechanism that can
explain the platform’s bene�ts. However, as of 2016, only 3% of solar buyers used an online plat-
form to purchase a PV system (O’Shaughnessy and Margolis, 2018). Some policymakers have
taken steps to steer more buyers and sellers towards platforms. As one example, Connecticut
recently introduced a state-sponsored platform in the solar PV market.10 Policymakers have
also used platforms to promote competition in other industries such as healthcare.11 �erefore,
one implication of the results is that policymakers could consider developing their own plat-
forms or encouraging participation on existing platforms to reduce solar PV prices and increase
solar PV adoption.

�e second set of counterfactuals provides the �rst welfare analysis of a solar subsidy pol-
icy that incorporates consumer welfare, producer welfare, and environmental externalities. Re-
newable energy subsidies have been a cornerstone of environmental policy over the past two
decades. More recently though, policymakers have removed, or considered removing, several
existing subsidy policies, such as the ITC. I �nd that removing the ITC causes a reduction in
total welfare by reducing market participants’ rents and increasing environmental damages by
more than the cost of the subsidy itself. To my knowledge, this is the �rst paper to account for
changes in producer surplus when assessing the welfare e�ects of renewable energy subsidies.
Measuring these producer surplus gains is pivotal in the cost-bene�t analysis because consumer
surplus gains and environmental bene�ts alone are not su�cient to cover the subsidy cost.

�e results also provide insights on the economics of two-sided platforms more broadly.

9Producers’ installation marginal pro�t grows by $0.80 per subsidy dollar. However, bid preparation costs also
increase by $0.03 per subsidy dollar because the ITC encourages more sellers to bid on projects.

10For details see the Connecticut Greenbank’s website gosolarct.com operated under Connecticut Legislature’s
Public Act 11-80.

11A primary aim of the A�ordable Care Act was to reduce premiums and expand health insurance coverage
for Americans. One principal mechanism for meeting that goal was establishing new individual health insurance
marketplaces (platforms) where consumers can shop for, compare, and purchase plans.
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Notably, many other industries have shi�ed transactions towards online platforms in the past
decade. In markets that are characterized by signi�cant search costs—-such as home mort-
gages or customized consumer services—platforms can deliver substantial price reductions and
aggregate consumer welfare gains. However, the empirical results also show that magnitude
of these welfare gains can di�er substantially across consumers when sellers can discriminate
on both the extensive margin (selection into bidding) and intensive margin (bid prices). More
speci�cally, the �ndings indicate that price-sensitive consumers—who stand to gain the most
from price savings—–may bene�t relatively less from platforms if they a�ract relatively fewer
bids via the platform.

Related Literature �is paper builds on multiple literatures. First, it relates to a grow-
ing literature on the economics of the residential solar market. �e large portion of existing
work has focused on estimating the adoption response to price or subsidy changes (Burr, 2014;
De Groote and Verboven, 2019; Feger et al., 2017; Gillingham et al., 2016; Gillingham and Tsve-
tanov, 2019; Hughes and Podolefsky, 2015; Langer and Lemoine, 2017; Reddix II, 2015; Snashall-
Woodhams, 2019).12 I build on this work by estimating solar PV demand using information
about household-level bid prices and choice sets. Most previous work focuses on the binary
decision of whether or not to install solar and has abstracted away from the choice of installer
and competition among installers.13 Identi�cation of price elasticity of demand in these papers
typically exploits variation in subsidy availability across households or changes in mean prices
over time. In contrast, I exploit variation across bid prices made to a speci�c household to
identify price elasticities.

Supply-side behavior and incentives are also crucial in determining equilibrium prices and
technology adoption decisions. However, most previous literature has not considered, or ex-
plicitly modeled, the supply-side of the solar PV market. To �ll this gap, I develop a model
that accounts for several important features of the market: (1) imperfect competition due to
imperfectly informed consumers, (2) selection by sellers into bidding on projects, (3) strate-
gic pricing conditional on each household’s characteristics, and (4) sellers that have imperfect
information about their competition when placing bids. �e model allows me to account for
both supply and demand responses to counterfactual environments, such as changes to subsidy
policies. One other paper that estimates a supply-side model of the solar PV installation market
is Bollinger and Gillingham (2019), who estimate a dynamic supply model to decompose static
markups from dynamic pricing incentives, driven by learning-by-doing. In another related pa-
per, O’Shaughnessy and Margolis (2018) compare installation prices paid by solar consumers

12Hughes and Podolefsky (2015), Pless and van Benthem (2019), and Gillingham and Tsvetanov (2019) use
reduced-form approaches to estimate the elasticity of demand for residential solar systems and to quantify the
adoption response to subsidy programs. Burr (2014), Reddix II (2015), De Groote and Verboven (2019), Snashall-
Woodhams (2019), and Langer and Lemoine (2017) all develop dynamic discrete choice models to estimate demand
for solar PV systems and to assess the welfare e�ects of di�erent subsidy policies.

13One exception is Bollinger and Gillingham (2019) who estimate a dynamic discrete choice model using av-
erage prices for each installer in each market and assume that buyers are fully informed about all installers. In
another related paper Gerarden (2017) formulates a model of competition in the upstream solar panel manufac-
turing market.

6



who used an online platform and consumers that did not. �ey �nd that platform users pay
signi�cantly lower prices for the same solar PV hardware.14 I build on O’Shaughnessy and
Margolis (2018) by developing a structural approach that allows me to assess the e�ects of the
platform on markups, consumer welfare, adoption choices, and pollution externalities.

�is paper also pertains to an extensive literature on competition in search markets, the
role of platforms, intermediaries, and the internet. Seminal work by Baye and Morgan (2001),
Gehrig (1993), Hall and Rust (2003), and Spulber (1996), theoretically investigated the role of
intermediaries in search markets. More recently, several empirical studies examine the e�ect
of introducing an intermediary or a technology that increases price transparency in other in-
dustries such as life insurance (Brown and Goolsbee, 2002), �sheries (Jensen, 2007), waste man-
agement (Salz, 2017), health care (Brown, 2017), retail gasoline (Luco, 2016), books (Ellison and
Ellison, 2009), and freelance computer programming (Krasnokutskaya et al., 2019, 2016). While
many previous studies have assessed the impact of online platforms or the internet on aver-
age prices, aggregate consumer welfare, or the distribution of producer gains (Goldmanis et al.,
2010), there has been li�le work on which types of consumers are likely to bene�t most from
online platforms in negotiated price markets. I build on the literature by providing one of the
�rst distributional analyses of consumer welfare gains while accounting for endogenous seller
bidding participation and pricing.

�e remainder of the paper proceeds as follows: in the next section, I discuss the details
of the online platform, provide descriptive statistics, and show regression evidence of selective
seller participation and discriminatory pricing. In Section 3, I develop a model of buyer and
seller behavior in the solar PV market and then discuss the methods used to pair the model to
the data in Section 4. Section 5 presents the welfare and counterfactual results, and Section 6
concludes.

2 Background and Data

Shopping for a roo�op solar system is time-intensive because installers generally do not post
prices. �erefore, inquiring buyers o�en need to call installers and schedule site visits to ob-
tain project proposals and price quotes. Because search is costly in this market, many buyers
only receive a limited number of price quotes, which increases the incentive for sellers to ex-
ercise market power. A 2017 survey conducted by the National Renewable Energy Laboratory
found over 80% of solar shoppers obtained two or fewer quotes before making a decision (Sigrin
et al., 2017). Recently, online platforms have emerged as an alternative to bilateral negotiations
between buyers and sellers.

As one example, the U.S. based quote aggregation platform EnergySage Inc. facilitates con-
nections between potential solar customers and a network of solar PV installers. More speci�-

14In ongoing work, Bollinger et al. (2020) exploit experimental variation in the number of active installers in a
market to estimate the e�ect of competition on prices and solar adoption.
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cally, the EnergySage platform enables households to conduct multi-a�ribute auctions to select
an installer for their installation projects. Multi-a�ribute auctions, also called beauty contest
auctions, refer to a procurement mechanism in which each bidder submits a multi-dimensional
bid that includes a price and a vector of other characteristics such as the panel hardware brand.
�e buyer then selects the winning bidder based on the multi-dimensional bids. Multi-a�ribute
auctions are related to scoring auctions but di�er in that the auctioneer does not explicitly an-
nounce the choice rule ex-ante (i.e., weights on each characteristic) as they would in a scoring
auction. Each EnergySage auction includes several stages. First, consumers create an account
on the platform’s website and provide information including: the physical address of the po-
tential installation, a monthly electricity bill, and an indication of whether they have obtained
other solar installation bids o�ine.15 Second, registered installers16 receive a noti�cation of the
project which includes details such as a Google Maps photo of the buyer’s roof (depicted in
Figure 6 of the appendix), as well as the monthly electricity usage of the buyer, and the infor-
mation about whether the buyer has other o�-platform quotes. Installers can then submit a
project quote to the buyer, which includes the system price, panel brand, inverter brand, and
details about the seller, such as a star rating and a description of their solar installation experi-
ence. Finally, a�er installers have submi�ed their bids, the potential consumers can select one
of the quotes and move forward with the transaction, or they can opt not to purchase any of
the o�ers.17 Figure 7 in the appendix shows an example of the purchaser’s comparison tool on
the platform.

A distinguishing feature of the multi-a�ribute auction environment is that buyers can base
their selection o� any criteria they choose and are not obligated to purchase the quote with the
lowest price. Solar systems can be payed for as a cash purchase, purchased via loan, or leased
from an installation company. Although many installers o�er leases or power purchase agree-
ments, 97% of buyers on EnergySage choose to buy a system with cash or a loan. �e signi�cant
skew towards host ownership instead of leases is likely because EnergySage shows buyers a
calculation of the net present value of each contract. It turns out that purchase agreements
nearly always o�er a higher net present value relative to lease agreements. �e trend towards
host ownership is not unique to the platform, overall market shares for leased systems have
been declining considerably in recent years. Barbose et al. (2019) reports that the market share
for leases among residential systems grew dramatically from 2007 to 2012, reaching nearly 60%.
However, lease shares have fallen sharply in recent years, with third-party ownership compris-
ing just 38% of installations in 2018. �e percentage of solar leases is expected to continue to
fall due to the emergence of residential loan products and a move away from the third-party
ownership model by SolarCity/Tesla and other major national installers.

15Alternatively, users can submit an estimate of their monthly electricity use.
16To submit bids, installers must �rst be pre-screened by EnergySage to ensure they are licensed, insured, and

experienced.
17Buyers and sellers can communicate with each other via private messaging or phone calls before a selection

is made. However, sellers cannot call a buyer unless they are requested to do so by the buyer.
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2.1 Data and Descriptive Statistics

�is study’s primary data set includes bid prices and consumer purchase choices for solar auc-
tions on the EnergySage platform. �e sample includes auctions originating between 2014 and
2016 within the states of Arizona, California, Colorado, Connecticut, Massachuse�s, New York,
and Texas.18 EnergySage collects information on each household’s address, the household’s av-
erage monthly electricity bill, and an indicator for whether or not the buyer obtained other solar
installation quotes from o� of the platform. EnergySage did not collect consumer demographic
information during the sample period of this study, so I also augment the EnergySage data with
household demographic data from Axciom’s Infobase obtained through In�nite Media, Inc. �is
consumer marketing database compiles household-level data from various sources such as pub-
lic records, (e.g., property ownership, professional licenses, or voting registries), and consumer
surveys (e.g., magazine subscriber lists, catalogs, and warranty cards.). In�nite Media, Inc. suc-
cessfully appended demographic information for over 80% of the EnergySage households. I
drop all households without a complete set of demographic variables and all projects where a
lease agreement was selected.19 I also drop a handful of other observations that appeared to
either be miscoded or outliers.20 Additionally, I merge each project with environmental bene�ts
estimates from Sexton et al. (2018) by ZIP code.21

Table 1 provides descriptive statistics of the 10,253 potential installation projects from the
EnergySage platform. �e average project received 3.54 bids, however, there is noticeable vari-
ation in the number of bids across projects, which I illustrate in Figure 2a. A quarter of projects
obtained two or fewer bids, whereas 25% of projects received �ve or more bids. Figure 2a shows
that there is substantial variation in the mean number of bids obtained across the core-based
statistical areas. For example, projects in San Diego-Carlsbad, CA remain substantially more
competitive than those in Tucson, AZ throughout the sample.22 We can also see that the mean
number of bids per project trends upward throughout the three-year sample period. At the
same time, Figure 2b demonstrates that mean bid prices fell consistently. �e households in the
sample di�er from one another in a number of ways. For one, households vary in electricity
expenditure. �e average household reported an electricity bill of $187/month with a standard

18In the analysis, I only consider residential projects from 2014 onward because both buyer and seller partici-
pation on the platform was very limited in the platform’s �rst year, 2013. I also drop projects in the �nal quarter
of 2016 because some buyers’ choices were still pending when the data set was compiled.

19I drop these projects because comparing per-wa� prices for leases vs. purchases is not straightforward.
Furthermore, these projects compose less than 4% of the choices and thus discluding them is unlikely to have
signi�cant e�ects on the analysis.

20I drop projects with system capacities (mean across bid proposals) under 3 kW and over 15 kW. I drop price
quotes under $2/wa� or over $7/wa�. I drop households that reported monthly electric bill under $50 or over $500.
Finally, I drop projects with a home market valuation below $100,000.

21Sexton et al. (2018) calculate the annual pollution damages avoided in dollars per kilowa� of residential solar
capacity for each ZIP code. I scale the pollution damage estimate by the capacity of the system and assume a 20-
year system life span with a 5% annual discount rate to determine the net present value of environmental damages
avoided.

22Projects that are outside a core-based statistical area (CBSA) or are in CBSA with fewer than 100 total projects
are placed into a new category by state. For example, a project located in Aspen, Colorado are de�ned as “Other,
CO”
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Table 1: Project Summary Statistics

Mean SD 25-%tile 50-%tile 75-%tile
Number of Bids 3.54 1.84 2.00 3.00 5.00
Home Market Value ($1,000s) 687.49 508.66 325.00 550.00 900.00
Age of Home 42.24 33.23 17.00 36.00 58.00
Home Size (sq�) 2238.57 863.92 1608.00 2100.00 2692.50
Env. Damage Avoided ($/KW-yr) - ZIP 46.69 18.42 26.12 51.84 53.34
Annual Solar Output (KWh/KW) - ZIP 1428.28 199.17 1198.72 1513.38 1559.34
Electricity Bill ($/month) 187.03 89.38 120.00 167.28 240.00
HH Head Age 51.86 13.86 42.00 50.00 62.00
HH Head Race - Asian (0,1) 0.12 0.32 0.00 0.00 0.00
HH Head Race - Black or Hispanic (0,1) 0.12 0.32 0.00 0.00 0.00
HH Head Holds Bachelor’s Degree (0,1) 0.49 0.50 0.00 0.00 1.00
Has O�-Platform �otes (0,1) 0.17 0.38 0.00 0.00 0.00

Notes: �e number of bids, household monthly average electric bill, and an indicator for whether the consumer has
o�-platform quotes are recorded and reported directly by EnergySage. Annual environmental damages avoided
per kW capacity are calculated at the zip code level by Sexton et al. (2018). Additional variables come from In�nite
Media’s consumer database and were merged with the EnergySage data by property address.

deviation of $89/month. �e monthly electricity bill is a key variable because it helps determine
the optimally-sized solar system for the household. Additionally, we see di�erences in search
behavior, about 17% of the households reported having other quotes from installers o� of the
platform. We also see that the households vary in the expected solar generation productivity
and environmental bene�ts depending on their ZIP code.

I acquire the remainder of the consumer data from In�nite Media, Inc. �e data contain
two types of information about the households: (1) data on the home itself such as the age of
the structure, the square footage, and the home’s market valuation, (2) information about the
head of the household such as age, race, and whether they have a college degree. To verify
the precision of the data merge, Figure 10 in the appendix plots a binned sca�er plot of the
home square footage from the In�nite Media consumer data against the monthly electricity
expenditure reported by households directly to the platform. �e �gure shows that the variables
from each data set are very highly correlated in the way that we would expect.

Table 9 in the appendix shows the composition of projects across states and across time.
We see that the number of projects initiated through the platform grew dramatically over the
sample period. Each year the number of projects roughly triples. We can also see that over 40%
of the projects are located in California. �is pa�ern is consistent with the fact that California
is home to over 40% of solar installations in the U.S. Figure 9 maps the locations of all of the
projects in the sample and we can see that the projects tend to be more concentrated in larger
metropolitan area and cities.

A potential disadvantage of the platform data is that platform users may not be representa-
tive of the population of solar shoppers. An important question is whether platform users are
likely to have systematically di�erent willingness-to-pay relative to solar shoppers o� of the
platform? �e answer to this question has important implications for the interpretation and
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Figure 2: Competition and Prices by Core-Based Statistical Area Over Time
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(a) Mean Bids Per Project
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(b) Mean Bid Prices

Notes: Each grey line represents a CBSA. Projects that are outside a CBSA or in CBSA with fewer than 100 total
projects are placed into a distinct category by state. For example, a project located in Aspen, Colorado would be
de�ned as ”Other, CO”.

external validity of the results.
Although, I am not able to test these questions directly, I provide a comparison of the income

distribution of households using the platform with the income distribution of the broader pop-
ulation of solar adopters. To do so, I collect information from Barbose et al. (2018) on incomes
for U.S. households with solar installations. �e household-level data from Barbose et al. (2018)
is not publicly available but the authors calculate the income distributions of solar adopters by
state and year.23 �e household incomes in Barbose et al. (2018) are reported in $50k-width bins
so to make the two data sets comparable, I aggregate my income data for the platform shop-
pers into three income categories: “<$50k”, “$50k-100k”, and “>$100k”. Figure 11 displays the
income distributions for three groups: (1) all solar PV adopters, (2) households that purchased
a solar system through the platform, and (3) all households that used the platform including
those that did not buy a solar system. We see that the income distribution for population of
solar PV appears relatively similar to the income distribution of the subset of households that
purchased a solar system through the platform. Solar adopters are relatively a�uent overall
(Borenstein, 2017), over 55% of adopters have household incomes above $100k and only 13%
have an income under $50k. Similarly, 11% of solar adopters in the EnergySage sample had

23I only consider the solar PV household income data from Barbose et al. (2018) for the years and states used
for the main analyses: AZ, CA, CO, CT, MA, NY, and TX in 2014-2016.
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incomes below $50k but were slightly less likely to have incomes above $100k (46%). �us,
platform users appear relatively similar to the broader population of solar buyers in terms of
income. If anything, platform users are slightly lower-income relative to the broader popula-
tion of solar PV adopters. Despite the similarity in income distribution, there could be other
di�erences between platform users and non-users and, therefore, the reader should interpret
the results with this caveat in mind. An advantage of the data is that there is a large amount of
demographic heterogeneity across households within the sample. �erefore, when estimating
the demand model, I focus on estimating heterogeneity in preferences across households with
di�erent wealth and energy use behavior. Estimating these heterogeneous preferences allows
me assess which types of households bene�t most from using the platform.

Characteristics of Solar Bids

Table 2 provides information about the characteristics of the bids submi�ed for these projects.
�ere are several variables that can di�er across each bid: bid price in dollars per wa�, proposed
capacity of the system to be installed, the brand of the solar panel, and the type of inverter. Buy-
ers o�en obtain quotes for several di�erent types of panel (module) brands24 and EnergySage
shows buyers a rating classi�cation of each panel brand. For example, premium panels have
higher e�ciency and be�er warranties.25 More e�cient panels are a�ractive because for a given
physical system size26 a more e�cient panel will create more electricity.27 About 34% of bids
in the data are for panels designated as “premium”. EnergySage also identi�es the very high-
est quality panels as “premium plus”,28 however, these panels are much more expensive and
less than 4% of bids o�er a “premium plus” panel. Another de�ning component of a bid is the
inverter to be installed. �e inverter converts the direct current (DC) output of the PV panel
into alternating current (AC). String inverters are the cheapest inverter technology and can
perform well if there is no shade at the project location at any time during the day. However,
a system with a string inverter may fail to achieve optimal output if shade covers part of the
roof. Microinverter and power optimizer technologies can help the system to perform be�er in
partial-shade conditions but typically are more expensive. I combine microinverters and power
optimizers into a single category and I refer to them broadly as systems with microinverters.29

Bids including microinverter technology are common on the platform comprising 73% of total

24A PV module consists of many PV cells wired in parallel. A panel can consist of one or more modules and is
the largest hardware component of a system in terms of size and cost.

25EnergySage designates LG Electronics panels as “premium”.
26Physical size is distinct from capacity, if two panels have the same capacity, but one is more e�cient, the

more e�cient panel will be physically smaller.
27�e platform only allows each seller to place a single bid. For example, a seller cannot place two di�erent

bids for di�erent panel qualities.
28Panels from SunPower Corporation are “premium plus”.
29�e industry o�en refers to this class of inverters as module level power electronics.
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bids.30

Another factor that can in�uence a buyer’s choice between bids is the quality of the seller.
EnergySage provides several metrics that allow potential buyers to gauge the quality of each
seller including a star rating, information about the installer’s experience, as well as customer
reviews. In the data, each sellers’ name is anonymized, but I observe an unique installer ID
that allows me to link each installers bids and performance across projects. I also observe each
sellers’ rating as of the end of 2016. Additionally, I observe each installers’ experience in terms
of total number of residential solar installations completed as of late 2016. About 60% of bids
came from installers that had a �ve-star (out of �ve) rating at the end of the sample, whereas
18% of bids came from installers that had not yet been rated. �e average bid came from an
installer with nearly 2,400 previous installations completed, but there was notable variation in
experience.31

Panel B of Table 2 shows the di�erence in mean characteristics for winning versus non-
winning bids for a single market, the Los Angeles core-based statistical area (CBSA) in the �rst
half of 2016. We see that winning bids had lower prices on average, but we also see that winning
bids were more likely to be from �ve-star-rated installers and are more likely to have premium
panels and microinverters. �ese correlations suggest that non-price factors are also important
in the buyer’s choice between bids.

Table 2: Summary Statistics - Bid Characteristics

Panel A: Full Sample

Mean SD
Total Gross Price ($ 1000s) 25.79 (10.22)
Unit Price ($/wa�) 3.57 (0.49)
System Capacity - KW 7.30 (2.88)
Premium Panel (0,1) 0.34 (0.47)
Premium Plus Panel (0,1) 0.04 (0.21)
Microinverter (0,1) 0.73 (0.44)
Installer Rating = 5 Star (0,1) 0.60 (0.49)
Installer Rating = 4.5 Star (0,1) 0.08 (0.27)
Installer Rating ≤ 4 Star (0,1) 0.18 (0.38)
No Ratings (0,1) 0.18 (0.38)
Experience: # of Installs (1000s) 2.40 (4.55)
Observations 37080

Panel B: Los Angeles CBSA - 2016H1
Selected Bid (0,1)

0 1
Mean SD Mean SD

Total Gross Price ($ 1000s) 23.59 (8.83) 22.74 (7.03)
Unit Price ($/wa�) 3.53 (0.29) 3.41 (0.22)
System Capacity - KW 6.72 (2.55) 6.60 (1.74)
Premium Panel (0,1) 0.54 (0.50) 0.64 (0.49)
Premium Plus Panel (0,1) 0.01 (0.10) 0.09 (0.29)
Microinverter (0,1) 0.78 (0.42) 0.86 (0.35)
Installer Rating = 5 Star (0,1) 0.67 (0.47) 0.73 (0.46)
Installer Rating = 4.5 Star (0,1) 0.01 (0.09) 0.00 (0.00)
Installer Rating ≤ 4 Star (0,1) 0.24 (0.42) 0.18 (0.39)
No Ratings (0,1) 0.24 (0.42) 0.18 (0.39)
Experience: # of Installs (1000s) 3.19 (3.88) 3.16 (3.83)
Observations 964

Notes: �e installer ratings and experience variables were recorded at the end of 2016 and therefore do not vary
across auctions for a given installer.

30�e data does not distinguish explicitly between microinverter and string-inverter bids but does list the
inverter brand. I de�ne a bid as having a microinverter if the inverter brand is Enphase Energy or SolarEdge
Technologies. �ese two companies together controlled 95 percent of the module-level power electronics market
in 2015.

31�ere are a several installers that do not report a number of residential installations that they have completed,
I set these installer’s experience level equal to the median installation experience in the overall sample.
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2.2 Descriptive Evidence: Selection and Price Discrimination

Having discussed the data, I present several descriptive results about sellers’ participation and
bid prices that motivate the model developed in the next section.

�ere are a few mechanisms by which platforms could facilitate increases in solar PV adop-
tion and improve consumer welfare. First, the availability of the platform could change the
number of bids obtained by each household. An increase in the number of bids could increase
solar adoption rates if sellers are di�erentiated in cost or in quality. If sellers have heterogeneous
costs, then more bids equates to giving each household more cost draws and consequently a
lower expected minimum bid price even if sellers’ pricing strategy is held �xed. Similarly, if sell-
ers are vertically or horizontally di�erentiated, then more bids per project could lead to more
solar purchases by linking buyers to higher quality or be�er-matched sellers. Seller quality
could vary due to ratings, reviews, experience, warranties, and other service o�erings. Addi-
tionally, a change in the number of bidders will change each �rms’ optimal pricing strategy.
�us, the equilibrium e�ects of the platform on prices, solar adoption, and consumer welfare
hinges not only on how many sellers are registered for the platform, but also on how sellers
choose projects to bid on and how sellers set prices.

Figures 3a and 8a (Appendix) illustrate variation in auction participation across two impor-
tant household characteristics: home market valuation and monthly electricity expenditure.
Figure 3a depicts a binned sca�er plot with home market valuation on the x-axis and the mean
number of bids obtained in each bin on the y-axis, as well as a quadratic �t line. We see that
homes with higher market valuations a�ract more bids through the platform. Sellers bid 30%
more frequently on homes valued over $1 million compared to homes worth under $300,000. In
Figure 8a we see an analogous pa�ern with electricity expenditure, households with monthly
bills below $100 get fewer than three bids on average, relative to nearly four bids for households
with bills above $300/month.

Figure 3b (and 8b) reveals disparities in the bid prices across households. �e �gure plots
a binned sca�er plot with the total installation price (before tax credits) on the y-axes. �e
total installation price for each observation is linearly adjusted for capacity (kW) and the time
that the project originate (half year) so that each observation is more comparable. �erefore,
the standardized prices should be interpreted as a bid price for a mean-sized system in the �rst
half of 2016 (H1). We see that households with more expensive homes (and those with higher
electricity bills, see 8b) receive higher size-adjusted bid prices. �ese higher prices are despite
the fact that these projects are more competitive on average, as shown in 3a. While these pricing
disparities could be linked to systematic di�erences in costs, this relationship is suggestive that
installers are bidding higher prices to households that are likely to be more inelastic.

Figures 3c and 8c further investigate bid prices di�erences across households. Figure 3c,
again, plots the relationship between bid prices and home market valuation, but plots the rela-
tionship separately across markets with varying degrees of competition. I de�ne a market as a
CBSA-half-year. I then separate households into four categories based on the market in which
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Figure 3: Auction Participation and Pricing by Home Market Value
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Notes: Panels b,c linearly adjust the prices for the capacity (kW) and the time (half year) the project occurred before
plo�ing. In panel c, the mean bids in the market is the average number of bids across all projects within the same
CBSA and the same half year.

they are located: markets with under 2 bids per project on average, markets with 2-3 bids, mar-
kets with 3-5 bids, and markets with over 5 bids on average. �ere are several notable pa�erns.
Unsurprisingly, we see that bid prices made in more competitive markets are systematically
lower across all home values. �is relationship is also consistent with the correlation shown
in Figure 2 that bid prices fall over time as bidding competition increases. However, we see
that the relationship between home valuation and bid prices changes with competition. In less
competitive markets, those with fewer than three bids per project, there is a large increase in
bid prices associated with both higher home values and higher electricity bills. In contrast, we
see that bid prices are relatively constant across home valuations and energy bills in more com-
petitive markets with more than three bids per project. An implication of these pa�erns is that
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more bidding competition is associated with a large reduction in bid prices for households with
expensive homes or high electricity expenditures. �ese pa�erns in the data are also supported
by the �rst column of Appendix Table 11, which shows the results of a �xed e�ects regression
of bid prices on the mean number of bids in the household’s market, as well as interactions of
mean number of bids with household electricity expenditure and home valuation.

A plausible explanation of the heterogeneous relationship between competition and bid
prices in Figure 3c is di�erences in buyers’ price-elasticities. For instance, if households with
lower home valuations are more price sensitive, then sellers’ optimal markups will be relatively
lower if they are bidding against few or no competitors. In particular, if households are more
price-sensitive then a higher bid by a monopolist or a duopolist will be more likely to be rejected
by the buyer.

If home valuation and price elasticity are indeed negatively related, then the relative welfare
e�ects of the platform are ambiguous. On the one hand, wealthier households, in terms of home
valuation, a�ract more bids (Figure 3a) and larger bid price reductions from added competition
(Figure 3c). On the other hand, if wealthy households are more price-inelastic then a relatively
larger bid price reduction could still lead to a relatively smaller consumer surplus gain.

3 Model

Motivated by these pa�erns in the data, I develop a structural model that incorporates hetero-
geneous buyer preferences and strategic participation and bidding by sellers. In the following
sections I describe the estimation procedure and use the estimates to evaluate welfare impacts
and counterfactuals.

In the model, each buyer i seeks to procure installation services for a single indivisible
project using a multi-a�ribute auction. �roughout the paper, I use i to refer to both a buyer
and their respective project. Buyer i’s project is distinguished by its project type zi, which
is characterized by geographic market where the project is located, the time period, and the
characteristics of the household. For each project of type z, there is a set N (z) of potential
sellers that choose whether or not to submit a bid for the project.

Each seller j is di�erentiated by their type which is characterized by a vector wj . A seller’s
type could be distinguished by a relatively parsimonious measure such as a star-rating category,
a relatively higher dimensional variable such as a unique installer ID (i.e., seller �xed e�ects),
or a combination of variables.

Each seller’s type is observable to both the buyer and the other potential sellers. If a seller
chooses to participate in the auction for project i they then also select a price bid Bij . Each
seller is only permi�ed a single bid for each project. Sellers’ bids are characterized by their
price in addition to a vector of non-price characteristics xij such as panel quality and inverter
type. In contrast to the seller’s type wj , xij is allowed to vary across projects for a given seller.
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3.1 Demand

�e allocation rule in a multi-a�ribute auction comes from the buyer’s choice problem. Let
Ki ⊂ N (zi) be the set of sellers that decide to participate in the auction for project i. Buyer i
then chooses between the project bids and an unspeci�ed outside option (k0) to maximize their
utility. Buyer i’s utility from selecting option j is given by:

uij = Bijαi + x′ijβ + w′jγ + δi + ζig + (1− λ)εij

αi = z
(1)′
i α̃, δi = z

(2)′
i δ̃. (1)

Here Bij is the bid price for option j, and αi is the price sensitivity of buyer i. Buyer price
sensitivity, αi, is a function of of an m-dimensional vector household characteristics denoted
z(1) = z1:m, such as the household’s home market valuation. Utility is a�ected by xij , the
non-price characteristics of the bid, such as the panel brand quality, and the solar inverter
type. Utility also depends on a�ributes of each seller that are �xed across bids, wj , such as
installer �xed e�ects. �e δi term is a demand shi�er for buyer i that allows utility for all of
the “inside options” to vary depending on a p-dimensional vector of household characteristics
z(2) = zm+1:m+p such as the geographic market and time-period. Notice that the variables
determining the project type, z, include both sets of household-level variables in z(1) and z(2).
Choices are also in�uenced by εij , an independent and identically distributed random term that
is assumed to follow a type-one extreme value distribution; ζig is also an idiosyncratic term but
is assumed to be constant for each buyer across all the “inside options”. ζig follows the unique
distribution distributed such that ζig +(1−λ)εij is also an extreme value random variable. �is
utility speci�cation gives rise to the nested logit model (Cardell, 1997). �e nested logit model
allows for more �exible substitution pa�erns in comparison to the standard logit model because
it accommodates correlation in preferences for products within pre-speci�ed groups. Here, I
specify one group to be the “outside option,” and the other group to contain all of the project
bids. Some households may register for the platform just out of curiosity about solar PV prices
and may not be serious about making a purchase. Likewise, there may be customers that are
very adamant about buying a solar PV system. �erefore, these consumers would be unlikely
to select the outside option even if some of the options in their choice set were removed. �e
nested logit model allows for these types of individuals. As λ approaches zero, each buyer has
no correlation in preferences for each “inside option”, and the model reduces to the standard
logit model. As λ goes to one, the random component of buyers’ preferences for each “inside
option” become perfectly correlated. Finally, the overall level of utility is not identi�ed, so I
normalize the utility of the outside option to equal zero plus an error term.

In modeling the buyer’s choice, I assume each buyer chooses the installation option that
delivers the highest utility per unit of capacity. �is assumption simpli�es the demand model
because I can model the buyer’s decision as a simple discrete choice instead of a discrete-
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continuous choice. �usBij in utility is the bid price in dollars per wa�. Current public policies
largely dictate each buyer’s optimal system capacity. In particular, net-metering rules allow res-
idential solar customers to sell electricity generated by their roo�op system to their utility at
the retail electricity rate, as long as the household’s annual generation does not exceed their
annual consumption. Any solar generation that exceeds the household’s annual consumption
is compensated far below the retail rate. As a result, the system capacity that will deliver the
largest net present bene�t to the buyer is the capacity that equates the expected annual solar
generation with the expected annual electricity use.32

3.2 Supply

�e supply-side model has several fundamental di�erences from a standard di�erentiated prod-
ucts model. First, �rms must make an explicit decision about whether to submit a price quote
to each potential buyer. Second, sellers do not have information about exactly how many com-
peting suppliers will make bids to the customer. Moreover, the suppliers do not have perfect
information about the identity and characteristics of the competitors they will face, nor about
the price quotes those competitors will submit. Firms cannot see the exact identity of com-
petitors that o�er bids for a particular project. However, they can observe the total number
of bids that were submi�ed to an auction ex-post. �ey also see which other �rms participate
on the platform in their area. �erefore, it is reasonable to assume that the suppliers know the
distribution of possible competition they are likely to face for a given project.

I model suppliers bidding behavior as a two-stage process. In the �rst stage, each potential
bidder j ∈ N (zi) must decide whether or not to enter the auction for the project i. At the
time of entry, �rms do not know their exact marginal cost of completing the project, but they
know the distribution of possible costs they could incur. �ey also know the probabilities of
each of their opponents entering the auction, the characteristics of those opponents, and the
distribution of possible prices those opponents would submit. Additionally, they know the
mean utility of the buyer (but not the random component of utility).33 �erefore, each �rm can
form an expectation about their pro�ts, conditional on the decision to enter the auction.

If seller j decides to enter the auction for the project, they incur a bid preparation cost ηij ,
where ηij ∼ Lognormal(µ(zi,wj), σ

2(wj)). �e expected bid preparation cost depends on
both the project type and the seller’s type. I assume that bid preparation costs are i.i.d. across
projects and �rms and is private information of each potential bidder. If a �rm decides to enter
auction i, then the �rm learns the non-price characteristics of their bid xij , the capacity of the
system to be installed qij , and the marginal cost of completing the project cij .

To make the model empirically tractable, I assume that the non-price characteristics, xij ,

32In practice, each installer can propose a di�erent system capacity when bidding through the platform. In a
later section, I will show that the demand estimates are robust to controlling for the proposed system capacity
as a non-price bid a�ribute. I also show that the demand elasticities are relatively similar if I use the discrete-
continuous choice utility formulation proposed by Hanemann (1984).

33In particular, I assume that sellers know all of the parameters of the buyer’s utility function, α, β, δ, and λ.
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are not strategic choices of bidders. �is assumption means that �rms are not choosing non-
price characteristics, such as panel quality and inverter type strategically when placing a bid.
While this assumption is made primarily for tractability, the assumption also �nds support in
the data. For example, installers will typically use the same equipment for many consecutive
projects. �ey may change module brands occasionally, but the hardware available to them to
complete a given project is likely predetermined by their existing inventory. �e practical in-
terpretation of this assumption is that sellers need to check their existing product stock (which
is predetermined) before knowing the exact non-price characteristics of their bid. �ey learn
the non-price components of the bid by incurring the bid preparation costs.

Analogously to the demand-side, I also assume that the system capacity is not a strategic
choice for the sellers. Although each installer provides a recommended system capacity in
their bid, there is relatively li�le variation in the capacity o�ers made for a particular project.
In particular, a regression with project ID dummies can explain over 80% of the total variation
in system capacity o�ers in the data. Installers a�empt to choose a system capacity that will
generate enough to match the household’s annual energy use. As further support for this as-
sumption, the second column of Table 11 provides evidence that installers’ capacities are not
a�ected by strategic factors. In particular, I run a regression of proposed system capacity on
the mean number of bids across projects in the same market (CBSA-half-year). �is regression
provides a measure of how seller bids change within a market as the number of expected com-
petitors increases. Column 1 shows that the expected number of bids for a project a�ects the
bid prices; however, Column 2 demonstrates that the expected number of competing bids is not
related to proposed system capacities.

When �rms make their entry decision, they do not know their marginal cost, non-price
characteristics, or the exact capacity of the system. However, they do know the joint distri-
bution from which their marginal cost, non-price characteristics, and system capacity will be
drawn, FCXQ|wj ,zi(c,x, q|wj, zi). �e distribution depends on both the seller’s type and the
project type. �erefore, sellers will know that buyers with large electric bills will be more
likely to need a large system but they will not know the exact capacity of each system before
deciding to enter in the auction. A�er the �rms make their entry decisions in stage one, each
�rm’s marginal cost and non-price characteristics are drawn from FCXQ|wj ,zi and the installer
then decides on a price bid during the second stage.

Price Bidding

It will be helpful to �rst consider the �rm’s problem in the second stage a�er marginal costs
and non-price characteristics are realized. Conditional on entering an auction, the �rm j solves
the following problem when se�ing a bid price for project i:

max
Bij

qij[Bij − cij] · Pij(Bij,xij,wj|zi) (2)
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Where qij is the system capacity, Bij is �rm j’s per-unit price bid, cij is �rm j’s marginal cost,
and xij are the �rm’s non-price characteristics for project i. Pij(Bij,xij,wj|zi) is the equi-
librium probability of winning the auction conditional on placing placing a bid price of Bij ,
having non-price characteristics xij , and having type wj . �e equilibrium expected probability
of being selected is a function of the type of project zi. We work with expected probabilities
because the seller does not know exactly which competitors they will face nor the bids of those
competitors. We note that the solution to the bid pricing problem is not a function of the sys-
tem capacity realization, qij enters the expected pro�t function multiplicatively and, therefore,
does not directly in�uence the optimal per-unit bid price. However, the system capacity can
indirectly a�ect the price bid if system capacity and marginal cost are correlated.

When formulating �rms’ expectations, I assume that all sellers make entry decisions simul-
taneously, and submit their bids simultaneously. �erefore, the installers do not know the exact
number of bidders they will be competing against nor the identities of their competitors. �us,
�rms’ expectations (about the probability of winning) will only be a function of the project type,
conditional on the price and non-price characteristics of their bid. In practice, �rms on the plat-
form submit bids at slightly di�erent times. Although the identities of competing bidders are
not visible to auction participants, �rms can see how many bids have already been submi�ed
for a given auction. �erefore, it is possible that �rms could update their expectations based on
the number of bids that have already been submi�ed. �e assumption of simultaneous bidding
is made primarily to simplify computation in the empirical exercise. However, I provide evi-
dence that the assumption is a reasonable approximation of �rms’ behavior. In Appendix Table
10, I regress bid price on the order that a bid was submi�ed, controlling for the total number
of bids submi�ed for the project, installer �xed e�ects, CBSA �xed e�ects, and half-year �xed
e�ects. �e coe�cient on “order of bid” is small and not signi�cant. �is suggests �rms are not
making signi�cant changes in bidding strategy based on the order they submi�ed a bid.

Under the assumption of simultaneous bidding, a �rm’s expected probability of winning
Pij can be expanded as follows:

Pij(Bij,xij,wj|zi) = E[Probij(Bij,xij,wj;Bi,−j,Xi,−j,W−j|zi)] =∫
Probij(Bij,xij,wj;Bi,−j,Xi,−j,W−j|zi) · dG(Bi,−j,Xi,−j,W−j|zi)

(3)

Recall that Probij is the probability that buyer i selects �rm j’s bid conditional on realized
vector of competing price bids Bi,−j , having a stacked vector of non-price characteristics Xi,−j ,
and having types W−j . G represents the joint distribution function of Bi,−j,Xi,−j , and W−j

occurring in equilibrium, conditional on the project being of type zi. Since each �rm’s entry
draw and marginal cost draw is assumed to be i.i.d., we can express dG as the product of the
probabilities that each competing �rm l decides to enter the auction and then bids Bil and has
non-price characteristics xil.
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I de�ne the optimal bid function as B∗il(cil|xil,wl, zi) and H(wl, zi) as the probability that
a potential seller l that is of type wl enters an auction of type zi. �en we have:

dG(Bi,−j,Xi,−j,W−j|zi) =
∏

l∈N (zi)\{j}

H(wl, zi) · dFCX|wl,zi

(
B∗−1(Bil|xil,wl, zi),xil|wl, zi

)
(4)

WhereB∗−1 represents the inverse bid function. �e expression inside the product is the prob-
ability that �rm l enters the auction multiplied by the probability that �rm l bids Bil and has
non-price characteristics xil.

Firm i’s �rst-order condition for an optimal bid is given by:

(Bij − cij)
∂Pij(Bij,xij,wj|zi)

∂Bij

+ Pij(Bij,xij,wj|zi) = 0 (5)

Given a vector of non-price characteristics, the optimal bid functionB∗il(cil|xil,wl, zi) is de�ned
implicitly by Equation 5.

Seller Participation

Now consider the �rm’s decision of whether or not to enter an auction. Each �rm will enter
if the expected marginal pro�ts conditional on entering are larger than the �xed cost of bid
preparation ηij . When �rm j decides to enter auction i, they only know the project type, their
own seller type, and their private entry cost draw. Firm j’s expected pro�ts conditional on
entering the auction for project i can be expressed as follows:

E[πij|wj, zi] =

∫ [
qij·(B∗ij(cij|xij,wj, zi)−cij)·Pij(B

∗
ij,xij,wj|zi)

]
dFCXQ|wj ,zi(cij,xij, qij|wj, zi)

(6)
Recall thatFCXQ|wj ,zi(c,x, q|wj, zi) is the joint distribution of non-price characteristics, marginal
costs, and system capacity whose realization is not known to the �rm at the time of entry.
�erefore, the �rm will enter the auction as long as:

E[πij|wj, zi] ≥ ηij (7)

Under the assumption that ηij follows a lognormal distribution, the probability that �rm j enters
the auction for project i is:

H(wj, zi) = Φ

(
ln
(
E[πij|wj, zi]

)
− µ(zi,wj)

σ(wj)

)
(8)

21



Where Φ represents the cumulative distribution function for a standard normal random vari-
able.

Summary: Timing of the game

1. A potential buyer i initiates a multi-a�ribute auction by announcing the project type zi

to all potential entrants N (zi).

2. Each potential seller j ∈ N (zi) receives a private entry cost ηij . Each potential entrant
then compares their entry cost ηij to the expected marginal pro�t conditional on entering
the auction E[πij|zi,wj]. Each potential bidder chooses to enter if and only if expected
marginal pro�ts are larger than their entry cost.

3. Each seller that enters auction i receives a private marginal cost draw cij , learns their
non-price characteristics xij , and learns the exact capacity of the system qij . Sellers do
not observe which other competitors have entered the auction. Each entrant then chooses
a bid price Bij .

4. Buyer i chooses from each of the project bids or the outside option.

3.3 Equilibrium

For each seller j, a strategy consists of two functions: a participation strategy w × z× R+ →
{0, 1}, and a bidding strategy w×z×x×R+ → R+. Speci�cally, sellers use information about
the project type, their seller type, and their entry cost shock to determine the binary choice of
whether or not to enter. In the bidding stage, �rms consider the project type, their seller type,
their marginal cost draw, and their non-price characteristics to form a price bid. I follow the
convention in the literature by focusing on type-symmetric pure strategy Bayesian equilibrium
(Krasnokutskaya et al., 2019). �at is, all sellers of the same type use the same participation
strategy in equilibrium, and all sellers of the same type and same non-price-characteristics
use the same bidding strategy in equilibrium. An equilibrium in the participation stage is a
strategy pro�le such that all sellers satisfy Inequality 7, given the strategies of other �rms.
An equilibrium in the bidding stage requires that all �rms satisfy Equation 5 given the other
installer’s strategies. Krasnokutskaya et al. (2019) prove the existence of a type-symmetric
pure strategy Bayesian equilibrium of this game. However, there is no guarantee of a unique
equilibrium in the participation stage. �e next section describes the estimation procedure in
detail.

4 Estimation

I estimate the structural parameters in three steps. First, I solve for the demand parameters
via maximum likelihood. Second, I use the estimated demand parameters to simulate �rms’
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�rst-order conditions for each bid in the data and recover bid-speci�c markups. Finally, I use
the estimates from the �rst two steps to calculate each bidders’ expected marginal pro�t from
entering each auction and estimate the entry cost parameters using observed entry decisions.
I discuss the details of each step in the following subsections.

Demand Estimation

From Equation 1 we can see that there are four sets of variables that a�ect a buyer’s utility: (1)
B, the bid price (2) z(1), household demographics that determine price-sensitivity (3) z(2), vari-
ables that shi� the buyer’s preference for all of the installation bids (i.e., shi�s the likelihood
of picking the outside option), and (4) x, variables that characterize the non-price a�ributes of
each participating installer’s bid. I choose the baseline utility speci�cation to produce estimates
that are robust while also keeping the non-linear optimization computationally tractable. Ev-
ery household has a di�erent choice set so the choice probabilities cannot be aggregated to the
market share level as in Berry et al. (1995). �us, I estimate the demand parameters via maxi-
mum likelihood based o� the individual choice data, which involves a non-linear search over all
the utility parameters, as opposed to only the non-linear parameters as in Berry et al. (1995). In
my baseline demand model which controls for CBSA �xed e�ects as well installer �xed e�ects
(for permanent installers), there are around 100 utility parameters to estimate. �erefore, the
nested logit utility speci�cation, which has a closed-form expression for choice probabilities, is
more computationally tractable in this context relative to a random coe�cients utility model.

�e price that enters buyers’ utility for option j is measured in $/wa� and is scaled to 70%
of each installer’s gross bid price to account for the 30% Investment Tax Credit (ITC). I allow for
price sensitivity to vary across households with di�erent home market valuations. In particular,
I separate the sample into quartiles based on home market valuation and allow for each quartile
to have di�erent price coe�cients. I use home market valuation to proxy for wealth for a few
reasons. First, home valuation is likely to be observable to the installers when placing bids. On
the other hand, household income is unlikely observable to the sellers. Second, Caceres (2019)
shows that housing wealth is more closely correlated with total wealth than annual income
among a large sample of U.S. households. Finally, there is more variation in the home market
valuation due to the greater number of binned categories reported in the data.34

In the vector of demand shi�ers, z(2), I include �xed e�ects for each CBSA, �xed e�ects for
each half year of the sample, �xed e�ects for each quartile of household monthly electricity
expenditure, and a dummy variable for whether the household obtained o�-platform quotes.35

34�e data report the household annual incomes in 9 bins ranging from “$ 0-14k” to “ above $125k”. �e data
identify the home market valuation of each home in 17 bins ranging from “below $50k” to “above $ 2 million”.
Over 40% of the sample have annual household incomes above $100k. �erefore, a large share of them fall within
the highest reported income category. On the other hand, less than 4% of the sample is in the highest home market
valuation category.

35Projects that are outside a CBSA or in a CBSA with fewer than 100 total projects are placed into a new
category by state. For example, a project located in Aspen, Colorado would be de�ned as ”Other, CO”
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�ese coe�cients allow for di�erences in willingness-to-pay across households located in CB-
SAs with di�erent expected solar production, for example.

Finally, the utility for each option is also a function of several non-price characteristics:
�xed e�ects for premium and premium plus module categories, a microinverter �xed e�ect,
�xed e�ects for the installer’s star rating category, and a set of �xed e�ects that measure the
installer’s installation experience. I also allow for additional heterogeneity in seller quality by
including “permanent” installer �xed e�ects for each installer that placed over 300 total bids
through the platform during the sample. �ese permanent sellers account for over 60% of bids
in the sample. In later sections, I discuss the robustness of the results to changes in the utility
speci�cation.

Inferring Markups and Marginal Costs

In the next step, I recover a markup estimate for each bid in the data. To do so, I use the
�nal demand estimates to form each �rm’s �rst-order condition for an optimal bid from Equa-
tion 5. Notice that the FOC does not have a closed form since it contains two expectations
∂Pij(Bij ,xij ,wj |zi)

∂Bij
and Pij(Bij,xij,wj|zi). �erefore, we have to integrate the �rm’s probability

of winning over di�erent realizations of competitor sets, and competitor bid prices that are un-
known to the installer at the time of bidding. To evaluation the FOC for each bid, I follow the
following procedure:

1. First, obtain non-parametric estimates of the entry probabilities for each project-seller
type pair, {zi,wj}. �is estimate is just the ratio of auctions entered divided by total
auctions of that project-seller type. I assume a seller is a potential entrant for auction i if
they entered at least one auction of type zi.

2. Next, use the probabilities from the previous step to simulate the entry decisions for
auction i for each potential entrant in N (zi).

3. Draw price bids and non-price characteristics for each of the simulated entrants using the
empirical joint distribution of bids and non-price characteristics in the data. For example,
if a type wj seller enters a simulated auction of type zi; then randomly draw a bid (both
bid price and non-price characteristics together) from the pool of all bids placed by type
wj sellers in auctions of type zi.

4. Evaluate the choice probabilities Probij and demand semi-elasticities ∂Probij
∂Bij

inside the
integrals given the bid prices and the competitor’s observed characteristics.

5. Repeat the second through fourth step S times each36 and take the average of all the
simulated choice probabilities, and simulated demand semi-elasticities to obtain estimates
for the two expectations. Let s denote the simulation iteration, then the expressions are:

36I simulate 1000 iterations of each auction type.
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P̂ij =
1

S

S∑
s=1

Probsij,
∂̂Pij

∂Bij

=
1

S

S∑
s=1

∂Probsij
∂Bij

(9)

6. Finally, use the average choice probabilities, and average demand semi-elasticities to cal-
culate the markup portion of each bid. �e markup term for �rm j in auction i is equal
to − P̂ij

∂̂Pij
∂Bij

. Once we have an estimate of the markup term, the �rm’s FOC provides a

one-to-one mapping that we can use to recover the marginal cost of each project in the
data:

ĉij = Bij +
P̂ij

∂̂Pij

∂Bij

(10)

�is process allows me to infer a project-speci�c marginal cost for every bid in the data. I then
use the estimated marginal costs to form a non-parametric cost distribution for each seller-
project-type pair.

�e choice of project categories is critical for obtaining credible estimates of markups.
De�ning project type categories exempli�es a trade-o� between bias and variance. On the
one hand, de�ning too few project types can bias markup estimates if projects are heteroge-
neous. For example, an installation for a household in Denver with high energy use will be
di�erent ex-ante than an installation for a relatively lower energy using household in Los An-
geles because of di�erences in labor costs, permi�ing requirements, and di�erences in the set of
possible competing bidders. In addition, these households will need di�erent sized solar arrays
so the price per wa� will vary due to within-project economies of scale. Economies of scale
arise because some parts of the installation cost are �xed regardless of the system capacity such
permi�ing or inspection costs. Also, if labor costs do not scale linearly with system capacity
then we would expect to see decreasing unit costs as system capacity increases. Similarly, a
Denver project in 2015 will be di�erent from a Los Angeles project in 2016 because of di�er-
ences in hardware input costs, di�erences in consumer preferences, and di�erences in potential
bidders. For this reason, we would not want to use bids placed in Los Angeles 2015H1 when
simulating a Denver 2016H2 auction. However, if I de�ne too many project categories, (i.e.,
each CBSA-week has its own category), then markup estimates for each bid will have higher
variance because there will be only a handful of projects to use to simulate realizations of each
auction. In my main speci�cation, I employ a relatively high dimensional project type de�-
nition to avoid bias. �e project types are determined by �ve variables: the CBSA in which
the project is located, the half-year when the project was originated, home market value quar-
tile, the quartile of the household’s home electricity expenditure, and an indicator for whether
the buyer has o�-platform quotes. In a later section, I discuss the robustness of the results to
changes in the de�nition of project types.
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Entry Cost Parameters

In the �nal step. I use the estimated marginal costs to form each �rms’ pre-entry expected
marginal pro�t from entering an auction i. For each bid in the data, I can calculate the �rms’
post-entry expected pro�t (before the buyer makes a choice) using the bid price, marginal cost,
and probability of winning. �e post-entry expected pro�t for seller j in auction i is equal to
qij · (Bij − ĉij) ·Probij . To calculate a seller’s pre-entry expected pro�t Ê[πij] from entering an
auction i, I take the average of all the realized post-entry expected pro�ts for that seller’s type
wj for projects of type zi. More precisely, the pre-entry expected pro�t is estimated as:

Ê[πij] =
1

N(zi,wj)

∑
i∈zi

∑
j∈wj

qij · (Bij − ĉij) · Probij. (11)

Where N(zi,wj) is the total number of bids placed by type wj sellers in auctions of type zi.
I use

∑
i∈zi to indicate the sum over all auctions of project type zi and

∑
j∈wj

to indicate the
sum over all bids submi�ed by sellers of type wj .

Next, I use the pre-entry expected pro�ts Ê[πij] to maximize the following pseudo log like-
lihood function:

EntryPseudoLL(µ, σ) =
M∑
i

∑
j∈N (zi)

1[j enters i] · ln

Φ

 ln
(
Ê[πij]

)
− µ(zi,wj)

σ(wj)


(12)

+
(

1− 1[j enters i]
)
· ln

1− Φ

 ln
(
Ê[πij]

)
− µ(zi,wj)

σ(wj)




Where1[j enters i] is an indicator function that equals one if seller j enters auction i and is zero
otherwise. I specify that µ is a linear function of a CBSA �xed e�ects, half-year �xed e�ects,
installer star-rating �xed e�ects, installer experience �xed e�ects, and individual installer �xed
e�ects for permanent sellers. I also allow σ to vary across installer star rating categories.

4.1 Identi�cation and Modeling Assumptions

To identify the buyer utility parameters, we require that all variables entering the utility func-
tion, including bid price, are not correlated with the preference shocks εij and ζig. Also, we
need the number of bids made to each buyer to be uncorrelated with the unobserved prefer-
ence shocks.

My identi�cation strategy exploits the rich household-level demographic information ob-
tained in the marketing-research data. Namely, I employ a utility speci�cation that includes
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�exible �xed e�ects to control for household heterogeneity and a rich set of �xed e�ects to
control for bid quality. I include panel brand quality controls, inverter type controls, installer
star-rating dummies, installer experience controls, and installer �xed e�ects for permanent sell-
ers to control for quality di�erences across bids. To control for buyer heterogeneity, I include
electricity bill quartile dummies, a control for whether the household has o�-platform bids,
CBSA �xed e�ects, and half year �xed e�ects.

Identi�cation of the price coe�cients for each home value quartile, αi, comes from variation
in the prices quoted adjusting for seller quality, hardware type, common demand shocks across
time, demand shocks across CBSAs, and demand shocks to speci�c household demographic
groups (determined by the set of household-level controls such as electric bill quartiles). Intu-
itively, the price variation that identi�es αi comes from di�erences in marginal cost conditional
on buyer type and seller type—such as price changes driven by input cost shocks. Despite the
relatively rich set of buyer and seller controls, there still could be omi�ed variables correlated
with both prices and the unobserved preference shocks. In Section 4.2, I discuss these concerns
in more detail and present a series of robustness checks.

�e λ parameter is identi�ed by exploiting variation in the number of bids that households
receive a�er controlling for the CBSA, the time-period, home energy expenditure, home market
valuation, and whether the household has o�-platform quotes. For example, in 2015 H1, some
buyers in Hartford, Connecticut, receive two bids while others may receive three or more. To
consistently estimate λ, the variation in the number of bids should be coming from supply-side
factors. For example, say Household A solicits bids the week a�er Household B and receives one
fewer bid because one of the suppliers is now busy installing other roo�op systems that week.
On the other hand, the estimate of λ will be biased if variation in bids is driven endogenously
by demand-side factors. For instance, if some buyers are ex-ante more likely to buy solar (i.e.,
more educated households), and therefore more suppliers choose to bid on their project. If this
is the case, it will appear that the additional bids are causing more solar purchases, but in fact,
the likelihood of buying solar is causing an increased number of bids. In Section 4.2, I outline
and test a series of confounding factors that could correlate with both unobserved buyer tastes
and bid quantity.

A�er the demand parameters are identi�ed, understanding the identi�cation of marginal
costs is straightforward. With demand parameters in hand, we can compute �rms’ optimal
markups. �en using the markups, we can employ Equation 10 to create a one-to-one map-
ping between bid prices and costs. �e entry cost parameters are identi�ed by variation in
expected marginal pro�ts, holding seller type constant.37 In particular, µ and σ are pinned
down by the extent the probability of entry of type wj sellers changes as expected marginal
pro�ts increase. In theory, we could trace out the entire entry cost distribution for each seller
type non-parametrically if we observed the entry probability at every possible level of expected
marginal pro�t. To generate variation in expected marginal pro�t across auctions, we need ex-

37While also controlling for common entry cost shocks across states and years.
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ogenous variation in an observed variable, which does not a�ect the entry cost distribution
but enters the seller’s ex-ante payo� (expected marginal pro�t) before the entry decision. I
assume that the household-level demographics—home energy expenditure, home market valu-
ation, and whether the household has o�-platform bids—do not a�ect the �rms’ entry costs. In
contrast, the household-level demographics do a�ect �rms’ expected marginal pro�ts. For this
assumption to hold, it must be true that bid preparation time and e�ort is not di�erent depend-
ing on household characteristics within a market. Figure 12 provides a useful visualization of
the variation that identi�es the entry cost parameters. For a single market, the �gure shows
that there is substantial variation in the expected marginal pro�t due to variation in the house-
hold demographics. We see that, sellers are more likely to enter projects with higher expected
marginal pro�ts.

Having discussed the identi�cation of the model, it is also important to acknowledge a
potential limitation of my modeling approach: Namely, I employ a static model of demand.
While there is a large literature that has used static discrete choice models to estimate demand
for durable goods (i.e, Berry et al. (1995)), several related papers have implemented dynamic
demand models of the solar PV market (Bollinger and Gillingham, 2019; Burr, 2014; De Groote
and Verboven, 2019; Feger et al., 2017; Langer and Lemoine, 2017; Reddix II, 2015; Snashall-
Woodhams, 2019). My static demand estimates will be biased if consumers are forward-looking.

�ere are a few reasons why a static model may be more appropriate in my se�ing rela-
tive to other studies in the literature. First, several studies (Bollinger and Gillingham, 2019;
Burr, 2014; De Groote and Verboven, 2019; Langer and Lemoine, 2017; Reddix II, 2015) estimate
models using data from a period when solar subsidies were decreasing substantially over time,
making dynamic incentives especially crucial in the solar installation decision. In contrast, so-
lar subsidies in most US states did not change substantially during my sample period and were
not scheduled to change in the near future. Two exceptions are Connecticut and New York,
both which o�ered solar incentives that changed during the sample.38 �erefore, I test the ro-
bustness of the demand estimates to the exclusion of those states from the analysis. Finally,
the majority of existing papers in the literature use data from before 2013, when pre-incentive
solar installation prices were declining rapidly over time. Figure 13 in the appendix shows that
the median U.S. solar installation price was declining at around 15% per year in the early 2010s.
However, installation prices later stabilized, and by the start of my sample, the median instal-
lation price fell by only 2% between 2014 and 2015. �e relatively stable installation price trend
suggests that the households in my sample have relatively low option value in delaying their
solar investment to get a lower price next year.39

In summary, the absence of declining subsidies, together with relatively stable installation
38In Connecticut, the expected performance based buy-down program led to changes in rebate levels for solar

installations during the sample period. Similarly, the NY-Sun Incentive featured changing incentive levels over
time.

39De Groote and Verboven (2019) estimate that consumers use a relatively high discount rate when making
solar investments (real implicit interest rate around 15%), suggesting that consumers are unlikely to delay an
investment this year to get a price reduction of less than 5% next year.
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prices, indicates that a static model of demand is likely to deliver a more reasonable approx-
imation of consumer behavior in my se�ing. Nonetheless, I make several e�orts to mitigate
the possibility of bias in the demand parameter estimation. For one, I avoid using variation in
prices over time by including time �xed e�ects in utility; the time �xed e�ects allow the value
of the outside option to change over time. Hence, if consumers expected prices to drop in 2016,
the value of the outside option for consumers shopping in 2015 can shi� to account for those
beliefs. �erefore, time �xed e�ects provide a reduced-form way of controlling for potential
forward-looking behavior in the static model. With this caveat in mind, I now transition to
discussing the model estimates in the next subsection.

4.2 Estimation Results

Demand

�e top portion of Table 3 contains the estimates for the baseline utility speci�cation. �e esti-
mate of the nesting correlation parameter, λ, is 0.37. �e nesting parameter is greater than zero,
so we can reject the standard logit model. However, the nesting parameter is also lower than
one which indicates that there is imperfect correlation in the preference shocks. Consequently,
an increase in the number of bids will increase the likelihood of a household adopting solar
through improving buyer-speci�c match value.

As expected, the base price coe�cient ($/wa�) is negative and relatively large in magni-
tude. We also see that households in the top three home value quartiles are relatively less
price-sensitive, although the interaction terms are not quite statistically signi�cant (p-values
of 0.14, 0.15, and 0.14, respectively). �e middle portion of the table shows the mean own-price
elasticity across all bids made to households in each home value quartile; we see that bo�om
quartile is the most elastic (mean own-price elasticity = −1.68) despite receiving the lowest
number of bids on average.

�e parameters on the electricity bill quartile dummies reveal that households with higher
monthly electricity expenditure obtain a lower utility (per unit capacity) from a solar installa-
tion. However, households with larger electricity expenditure typically install higher capacity
systems. We will see in Section 5 that the consumers in the highest electric bill quartiles do
obtain higher total consumer surplus despite a�aining lower consumer surplus per wa�.

We also see that the coe�cient associated with whether the household has o�-platform
quotes is also positive. �is suggests that although households with o�ine quotes have more
outside options, these households also appear to have higher willingness-to-pay for a solar
installation relative to households that did not engage in any o�ine search.

In the top right side of the table we see that hardware characteristics are important to house-
holds, and that households prefer higher-rated panel brands and systems with microinverters,
holding prices �xed. We also see that buyers value installer characteristics. All else equal,
sellers with a rating under �ve stars are less likely to be selected relative to an installer with-
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Table 3: Demand Estimates

Nesting Parameter Non-Price Bid Attributes
λ 0.372 (0.061) Premium Panel 0.562 (0.078)
Price Coe�cients Premium Plus Panel 1.429 (0.152)
Constant −0.717 (0.109) Microinverter 0.370 (0.083)
× Home Mkt. Value - �artile 2 0.068 (0.045) Installer Attributes
× Home Mkt. Value - �artile 3 0.079 (0.053) Star Rating ≤ 4 −0.260 (0.261)
× Home Mkt. Value - �artile 4 0.089 (0.060) Star Rating = 4.5 −0.410 (0.291)
Household Attributes (× Inside Option) Star Rating = 5 0.281 (0.109)
Electric Bill - �artile 2 −0.067 (0.102) Installs Completed: 100-1000 0.697 (0.251)
Electric Bill - �artile 3 −0.241 (0.106) Installs Completed: >1000 0.749 (0.257)
Electric Bill - �artile 4 −0.584 (0.117)
Has O�-Platform �otes 0.368 (0.096)

Home Mkt. Value�artile Mean Own-Price Elasticity Avg Number of Bids
1 -1.68 3.1
2 -1.56 3.47
3 -1.57 3.84
4 -1.57 3.86

Fixed E�ects Log Likelihood

CBSA Fixed E�ects Yes -3823.542
Half-Year Fixed E�ects Yes
Permanent Installer Fixed E�ects Yes

Notes: �e utility speci�cations CBSA, half-year, and permanent seller �xed e�ects. Permanent sellers are those
that submi�ed over 300 total bids. All of the project a�ributes, non-price a�ributes, and installer a�ributes are
dummy variables. �e star rating coe�cients should be interpreted relative to installers with no rating. �e mean
own-price elasticity are calculated based of the realized choice sets and do not account for ex-ante uncertainty in
seller participation. Standard errors are in parenthesis.

out ratings. On the other hand, installers with a �ve-star rating are preferred over non-rated
sellers. We also see that an installer’s residential installation experience is highly valued by
buyers; buyers are willing to pay over 20% more for an installer that has completed over 1000
installations compared to an installer that has completed less than 100 installations.

Demand Robustness Checks

As discussed in Section 4.1, there are several threats to the identi�cation of the utility parame-
ters. �e price coe�cients will be biased if bid prices are correlated with unobserved installer
quality, unobserved hardware quality, or unobserved buyer characteristics. �e λ parameter
could also be biased if the number of bids is correlated with unobserved buyer characteris-
tics. Table 12 investigates the robustness of the key coe�cient estimates to adding a series of
potential confounding variables into the utility speci�cation.

�e baseline speci�cation controls for star rating and installer experience, as well as seller
�xed e�ects for permanent sellers. A potential concern is that the star rating, experience, and
even the seller �xed e�ects are imperfect controls if quality varies over time. For instance, star
ratings can change as installers bid more and complete more projects through the platform.
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Column 2 of Table 12 shows that both the price and nesting coe�cients are robust to adding
controls for the amount of time each installer has been active on the platform. In Column 3,
I consider a utility speci�cation with a full set of panel brand �xed e�ects in lieu of the more
parsimonious controls for “premium” and “premium plus” rated panels. �e key coe�cients
remain nearly unchanged a�er adding these additional hardware brand controls. In Column
4, I include additional household demographic variables that could be correlated with both
prices and willingness-to-pay for solar. Namely, I include a control for whether the household
head has a college degree, �xed e�ects for the race of the household head, and a dummy for
if the household head is over 65 years old. �e price coe�cients are very similar a�er adding
these demographic controls. Finally, the bid prices and number of bids could both be correlated
with factors that in�uence the viability of the speci�c roo�op. �e age of the house itself, as
well as the size of the house may a�ect the di�culty and cost of an installation, so I include a
set of controls for the physical size of the house (square feet) and the age of the house (years
since built). In particular, I add �xed e�ects for each home size quartile and each house age
quartile. �e parameters and the implied price elasticities are again robust to these changes. For
transparency, Table 14 also shows how the estimates change if some of the installer a�ributes
and household demographic variables are omi�ed from the utility speci�cation.

It is conceivable that prices are correlated with other unobserved household characteristics
that are also correlated with preferences; although these characteristics would need to be ob-
servable by the sellers through the platform but at the same time not collected and reported in
Axciom InfoBase’s household marketing research database.

Another key assumption of the demand model is that the buyer’s choice can be expressed
as a function of utility per unit capacity. E�ectively, this assumption abstracts away from the
buyer’s system capacity choice. �is assumption could be problematic if buyers’ choice is in�u-
enced by the proposed system capacity that each installer o�ers. For example, if buyers prefer
bids for smaller systems and system capacity is correlated with price per wa� due to instal-
lation economies of scale, then the price coe�cients will be biased. In the second column of
Table 13, I add an explicit control for each installer’s proposed system capacity as a non-price
a�ribute in utility. �e price coe�cients are almost invariant to this change, suggesting the sys-
tem capacity assumption is not consequential for the demand estimates.40 In the third column,
I consider an alternate functional form for buyers’ utility function. Hanemann (1984) shows
that if a buyer makes a discrete choice followed by a continuous choice, then the utility can be
wri�en as a function of the logarithm of price. �e intuition is that the buyer should only care
about the ratio of price to quality when choosing a product. Taking a log transformation leads
to a linear utility function with a logged price term. I �nd the log-price speci�cation leads to
demand estimates that are slightly more elastic than the baseline model. However, I also �nd
that the baseline model with linear prices be�er �ts the data than the log-price model.

40In other speci�cations not shown here, I �nd that adding the system capacity variable to utility has a large
e�ect on the price coe�cient if I also omit controls for household electricity expenditure.
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Figure 4: Marginal Cost and Markup Distributions

(a) Markup by Seller Rating (b) MC by Seller Rating

Notes: Kernel densities of the model implied marginal costs and markups.

As a �nal robustness check, I re-estimate the demand model a�er removing auctions located
in New York and Connecticut, the two states that o�ered time-varying subsidies during the
sample period. Any state or municipal subsidies that are �xed over time are controlled for with
the CBSA �xed e�ects in the baseline utility speci�cation, however, time-varying subsidies
could bias the estimated price elasticities if consumers are forward-looking. Table 15 shows
that removing Connecticut and New York does not substantially change the demand estimates.
Removing these two states leads to slightly higher implied elasticities and a correspondingly
lower mean markup of $1.45/wa� compared to $1.59/wa� estimated from the full sample.

Cost Estimates

With the demand estimates in hand, I solve for markups and marginal cost using the �rms’ �rst-
order-condition in Equation 5. Figure 4 shows the distribution of both markups and marginal
costs across across sellers with di�ering ratings. Figures 4a and 4b illustrate that �ve-star rated
sellers are more likely to charge higher markups, however these high-rated sellers are also
more likely to have lower costs. �e �gures also illustrate substantial heterogeneity in both
costs and markups across projects, and thus it is important to control for both seller-level and
household-level heterogeneity.

To further investigate which variables are linked to higher costs and to higher markups,
I run regressions with both marginal costs and markups as dependent variables, including all
of the variables in buyers’ utility (besides price) as regressors. Table 4 shows that the average
installation costs are lower for households in the top 75% of home valuation, but these more
expensive homes are also subject to much higher markups. We also see that households’ elec-
tricity expenditure is both negatively correlated with marginal costs and markups. Addition-
ally, the regressions show that higher quality hardware (premium panels and microinverters)
increases marginal costs but also earn higher margins. Consistent with Figure 4, we also note
that �ve-star sellers charge higher markups, but their prices are actually lower a�er accounting
for their lower marginal costs. Sellers with more experience charge higher markups but do not
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have substantially lower costs a�er controlling for seller rating.

Table 4: Marginal Cost and Markup Regressions

Dependent variable:

MC ($/Wa�) Markup ($/Wa�) Gross Price ($/Wa�)

Household Attributes
Home Mkt. Value - �artile 2 −0.130 (0.006) 0.140 (0.002) 0.010 (0.006)
Home Mkt. Value - �artile 3 −0.129 (0.008) 0.159 (0.002) 0.031 (0.007)
Home Mkt. Value - �artile 4 −0.151 (0.009) 0.191 (0.002) 0.040 (0.008)
Electric Bill - �artile 2 −0.037 (0.006) −0.037 (0.002) −0.074 (0.005)
Electric Bill - �artile 3 −0.063 (0.006) −0.049 (0.002) −0.112 (0.005)
Electric Bill - �artile 4 −0.075 (0.006) −0.068 (0.002) −0.143 (0.005)
Has O�-Platform �otes 0.0001 (0.005) −0.001 (0.001) −0.001 (0.005)

Non-Price Bid Attributes
Premium Panel 0.066 (0.005) 0.084 (0.001) 0.150 (0.005)
Premium Plus Panel 0.744 (0.011) 0.256 (0.003) 1.000 (0.010)
Microinverter 0.086 (0.006) 0.053 (0.002) 0.139 (0.005)

Installer Attributes
Star Rating ≤ 4 0.017 (0.022) −0.068 (0.006) −0.051 (0.020)
Star Rating = 4.5 −0.034 (0.016) −0.061 (0.004) −0.095 (0.014)
Star Rating = 5 −0.144 (0.008) 0.066 (0.002) −0.077 (0.007)
Installs Completed: 100-1000 −0.035 (0.012) 0.083 (0.003) 0.048 (0.011)
Installs Completed: >1000 0.025 (0.013) 0.095 (0.004) 0.120 (0.012)
Permanent Installer FE Yes Yes Yes
CBSA FE Yes Yes Yes
Half-Year FE Yes Yes Yes
Observations 37,080 37,080 37,080
R2 0.402 0.676 0.494

Notes: Robust standard errors in parentheses. �e dependent variables are the model implied marginal cost
($/wa�), the model implied markup ($/wa�), the observed bid price before tax credits ($/wa�). All variables
that enter consumer utility are included as covariates including the Home Market Value �artile dummies
which are interacted with price in consumer utility.

Table 5 shows how average markups and marginal costs progressed throughout the sample
period. Between the start of 2014 and the end of 2016, marginal costs fell by $0.31 per wa�
(over $2,200 on an average-sized system), and markups fell by $0.21 per wa� (over $1,500 on an
average-sized system). Costs and margins fell proportionally, and therefore the (before-subsidy)
Lerner index—calculated using all bids—remained relatively stable at about 0.45.

Figure 14a demonstrates that the estimated marginal cost reductions are mostly explained
by the fall in wholesale solar PV hardware prices reported by Bloomberg Inc. Figure 14a also
indicates that hardware costs account for about half of the total marginal cost. In particular,
the Bloomberg hardware cost index, together with the marginal cost estimates, imply that in
2016 H1 hardware costs made up about 28% of the solar installation prices (before subsidies),
non-hardware costs such as installation labor and permi�ing made up 28%, and markups made
up 44%. Figure 14b shows how the marginal cost estimates compare to stated costs reported by
publicly-traded solar installation �rms; the mean estimated marginal cost was slightly higher
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Table 5: Summary of Cost Estimates

Panel A: Mean Marginal Cost, Markups, Entry Costs

Half Year # of Bids MC ($/wa�) Markup ($/wa�) Lerner Index Bid Prep Cost ($)
2014 H1 2.07 2.19 1.76 0.46 39.61
2014 H2 2.34 2.14 1.74 0.46 62.39
2015 H1 2.54 2.15 1.69 0.45 45.22
2015 H2 2.72 2.1 1.68 0.45 33.66
2016 H1 3.98 2.03 1.56 0.44 16.04
2016 H2 4.03 1.88 1.55 0.46 9.84

Notes: �e table shows the mean number of bids, mean marginal cost, mean markup , mean Lerner Index (markup/
gross price) and the expected bid preparation cost, conditional on submi�ing a bid for each half-year of the sample.

than the cost reported by SolarCity/Tesla but slightly lower than the costs reported by Sun-
run and Vivint. Finally, we compare the estimated markups to other available estimates in
the literature. Bollinger and Gillingham (2019) estimate static markups of about $1.20/wa� to
$1.45/wa� using California data from before 2012, whereas the mean markup estimates in the
current paper are slightly larger ranging from $1.55-$1.76/wa� across 2014-2016.41

I use the entry cost parameters, reported in Appendix Table 16, to calculate the expected bid
preparation cost (entry cost) conditional on participating. Table 5 shows that bid preparation
costs fell from $40 in 2014 H1 to under $10 in 2016 H2. Figure 5 shows that the bid preparation
also becomes less-variable over time, with the majority of bid costs in the 0-$20 range by the
second half of the sample. Both Figure 5b and Table 16 also show disparity in entry costs across
sellers. Sellers with �ve-star ratings have higher bid preparation costs of $20.97 compared to
$13.28 for sellers with a 4.5-star rating. Higher bid preparation costs for higher quality sellers
are consistent with higher opportunity costs. For instance, higher-rated sellers may have more
project leads o� of the platform.

5 Welfare and Counterfactuals

In this section, I use the model estimates to evaluate the consumer welfare e�ects of the plat-
form. I then investigate the mechanisms driving the welfare results by simulating counterfac-
tuals that measure the causal e�ect of increasing the number of bids per project. Finally, I solve
a second set of counterfactuals to evaluate the welfare e�ects of government solar subsidies.

41One potential reason for the di�erence in estimated markups in Bollinger and Gillingham (2019), is that the
authors assume that buyers are perfectly informed about all sellers’ prices in their local market, if buyer’s are
imperfectly informed about prices, the estimated demand elasticities will be biased towards zero, thus leading
to lower estimated markups. �e di�erence in markup estimates could also be due to di�erences in the studies’
sample compositions or changes in market structure over time.
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Figure 5: Expected Entry Cost Distributions Conditional On Bidding

(a) Entry Cost Over Time (b) Entry Cost by Seller Rating
Notes: 5b shows density plots of the entry cost distribution across seller ratings. 5a shows entry cost density plots
for the �rst half vs the last half of the sample. �e expected cost distributions are conditional on the seller deciding
to enter a bid.

5.1 Consumer Surplus Gains From Platform Access

In the model, each buyer chooses between a set of installation bids on the platform and an
unspeci�ed outside option. �e outside option could include either not buying a solar system
or buying from an o�ine installer, therefore the expected consumer surplus associated with
each buyers’ platform choice set can be interpreted as households’ consumer surplus gain from
the platform. Recall that consumer utility is measured in dollars per wa�, so I need to scale
each household’s utility to obtain total consumer surplus. To calculate total consumer surplus,
I use the standard log-sum formula to calculate consumer welfare per unit of capacity and then
I scale each household’s per-unit utility by the mean system capacity that was o�ered to that
household.

Table 6: Consumer Surplus Gains from Access to the Platform

Panel A: Consumer Surplus Summary - Full Sample

Statistic Mean St. Dev. Pctl(25) Pctl(75)
Total Consumer Surplus Per Household ($) 1,451.24 1,319.34 590.31 1,855.41
Consumer Surplus Per Unit ($/wa�) 0.20 0.16 0.09 0.27
(Consumer Surplus)/(Mean Bid Price) 0.08 0.06 0.04 0.11

Panel B: Mean CS by Elec. Bill�artile

�artile Bids Total CS ($) CS ($/wa�)
1 3.12 1077.45 0.21
2 3.54 1542.51 0.24
3 3.64 1663.69 0.21
4 3.85 1535.79 0.16

Panel C: Mean CS by Home Value�artile

�artile Bids Total CS ($) CS ($/wa�)
1 3.1 1155.85 0.15
2 3.47 1553.43 0.21
3 3.84 1621.06 0.24
4 3.86 1476.33 0.22

Notes: Each column in Panel B and Panel C reports the means value of the variable for each quartile.

Table 6 Panel A shows that the platform increased consumer surplus by $1,451 for the av-
erage household. For reference, this welfare gain is equivalent to making a payment of 8% of
the mean bid price to each individual that used the platform. Noteably, there is substantial
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heterogeneity in bene�ts across households. �e top forth of households a�ain over $1,800 in
welfare gains, whereas the bo�om 25% experienced less than $600 in gains. Panel B and Panel
C demonstrate how consumer welfare varies across electricity expenditure quartiles and home
valuation quartiles, respectively. Households in the top electricity expenditure quartile realize
smaller per-unit surplus gains relative to households in the lowest quartile. However, these
households purchase bigger systems and consequently a�ain larger total welfare gains. More
speci�cally, households in the bo�om electricity bill quartile reap $1,077 in bene�ts from the
platform relative to $1,543, $1,664, and $1,536 for the top three quartiles respectively. A similar
pa�ern emerges in the distribution of gains across home values. �e lowest 25% of homes see
gains of $1,156 relative to $1,476 for the most expensive forth of homes.

�ere is also substantial variation in consumer bene�ts across CBSAs. According to Ta-
ble 18, the top ten CBSA are all located in the Northeast such as: Norwich-New-London, CT;
Worcester, MA-CT; and Cambridge-Newton-Farmington, MA. On the other hand, CBSAs with
the lowest welfare gains are located mostly in Texas, Arizona, and non-coastal California in-
cluding: Fort-Worth-Arlington, TX; Fresno, CA; and Austin-Round-Rock, TX. Table 17 breaks
down marginal costs by CBSA and indicates that CBSAs with large consumer surplus gains
are also more likely to have high installation marginal costs, whereas CBSAs with smaller con-
sumer gains are more likely to have lower installation costs.

�ese results indicate that the platform facilitated substantial gains for most consumers but
that wealthier households appear to be the largest bene�ciaries. �is distributional result was
not clear ex-ante because on the one hand, wealthier households are less price-sensitive (Table
3) and therefore stand to bene�t relatively less from a price reduction. On the other hand,
wealthier households a�ract more bids, see bigger price reductions, and gain access to more
distinct installers. �e distribution of welfare gains in Table 6 Panel B and C, therefore suggests
a high value of obtaining additional installer choices.

�ese �ndings motivate several additional questions: First, how much of the platform wel-
fare bene�t can be explained by the buyers obtaining additional bids? Relatedly, how much does
increasing the number of bids per project reduce solar installation prices? How much does so-
lar adoption and associated environmental bene�ts increase if buyers obtain more bids? How
does imperfect competition in the installation market in�uence the performance of government
subsidies for solar PV?

5.2 Counterfactuals

E�ects of Expanding Buyers’ Choice Sets

To investigate the mechanisms driving the platform’s consumer bene�ts. I measure the e�ect
of expanding buyers’ choice sets, holding preferences �xed. In particular, I simulate coun-
terfactuals in which I alter the number of installers that bid on each buyer’s project. In the
counterfactuals, installers are informed about the number of other competing sellers (if any),
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and each installer updates their optimal bid price based the number of competitors they will
face. In the counterfactuals, I assume that sellers know the number of competing bidders but
not the identities of the other bidders. I draw the identities of the bidders randomly with the
probabilities weighted by seller entry probabilities observed in the data.42 A�er I draw the in-
stallers for each project, buyers choose from competing bids and the outside option.43 I provide
additional details about the algorithm for solving counterfactual equilibria in the appendix.

Table 7 displays the outcomes of changing the number of bids from one and �ve. I report
all outcomes relative to the single-bid case (i.e., y|bids=N

y|bids=1
). �e top of the table shows that an

increase from one to �ve bids leads to 15.5% reduction in mean bid prices, a 25.2% reduction in
the lowest bid, and a 15.3% fall in purchase prices (selected bids). �ese results imply a $4,000
gross bid price decline (before subsidies) for a typical-sized system. �e table also reveals a
substantial decrease in the marginal e�ect of competition, namely, adding a second bid causes
a much greater marginal price reduction (9.7% from the baseline) relative to adding a ��h bid
(1.2% from the baseline).

Table 7: E�ects of Number of Bids Per Project on Market Outcomes

Counterfactual # of Bids Per Project
1 - Baseline 2 3 4 5

Relative Prices
Mean Price Per Wa� (All Bids) 1 0.880 0.855 0.842 0.834
Mean Price Per Wa� (Lowest Bid) 1 0.834 0.788 0.762 0.745
Mean Price Per Wa� (Selected) 1 0.903 0.874 0.857 0.845
Relative�antities, Externalities, & Consumer Surplus
# of Solar Installations 1 1.114 1.198 1.272 1.333
Solar Installed Capacity (KW) 1 1.112 1.194 1.267 1.327
Annual Solar Output (KWh) 1 1.108 1.187 1.257 1.314
Pollution Damages Avoided ($) 1 1.097 1.167 1.230 1.282
Consumer Surplus ($) 1 1.859 2.502 3.089 3.597
Producer Surplus (On Platform)
Total Producer Surplus ($) 1 1.501 1.843 2.140 2.379
Producer Surplus Per Bidding Seller ($/bid) 1 0.750 0.614 0.535 0.476

Notes: Table summarizes counterfactual simulations varying the number of bids that each project receives. All
outcomes are reported relative to the one-bid case.

�e second part of the table shows the impact of bid quantity on the share of households
that purchase a solar system. Measuring changes in the solar adoption is more challenging than
measuring changes in prices because I do not observe possible o�-platform solar purchases by
households in the sample. As a consequence, when a buyer chooses the outside option in the
counterfactuals, this could either mean that they choose an o�-platform installer or that they
do not purchase a solar system. Fortunately, I do observe whether each buyer had any bids
from o�ine installers. I assume that all buyers do purchase a solar system o� of the platform if

42�e seller entry probabilities are calculated separately for each project type. I also assume that installers
know the entry probabilities of each competitor.

43I simulate 100 iterations of each project and measure the average outcome across all iterations to reduce
simulation noise.
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they have an o�-platform quote and also choose the outside option. �is assumption provides a
lower bound of the e�ect of an additional bid on solar adoption. �e assumption yields a lower
bound because as the number bids increase in the counterfactuals, any measured increase in
solar purchases only comes from a subset of buyers that do not have any o�-platform quotes.44

We see that expanding the bid set from one to �ve bids leads to at least a 33% increase in the
number of households that adopt solar. Relatedly, a �ve-fold increase in bids leads to a 32%
increase in total installed capacity and a 31% increase in expected solar output accounting for
the expected capacity and location of the installations. I also use estimates from Sexton et al.
(2018) to calculate the net present value from avoided pollution damages resulting from these
additional solar purchases.45 I �nd that expanding buyers’ choice sets from one to �ve bids
leads to a 28% increase in external bene�ts via pollution reductions from fossil-fueled power
plants. �e �nal row of the table con�rms that increasing the number of bids can deliver large
consumer bene�ts. More speci�cally, providing a buyer with four additional solar bids causes
a 360% increase in consumer surplus.

In the third section of the table, I document changes in producer surplus as the number
of bids per project expands. �e producer surplus estimates should be interpreted with some
caution because the estimates only quantify changes in producer surplus for the sellers that are
participating on the platform. �e estimates do not account for changes in producer surplus
that would accrue to installers operating o� of the platform. With this caveat in mind, we see
that total producer surplus for on-platform installers increases over twofold if the number of
bids increase from one to �ve. �e increase in total producer surplus is driven primarily by the
rise in the number of transactions that occur as the number bids increases. Despite the increase
in aggregate producer surplus, the expected pro�t for each individual seller falls by about 50%
as the number of bidders increases from one to �ve.

Market Impacts of Solar Subsidies

In the next set of counterfactuals, I use the model to assess government subsidies’ impact on
market outcomes. Over the past few decades, subsidy programs have been a cornerstone of
policymakers’ e�orts to expand renewable energy investment. �e largest U.S. program pro-
moting roo�op solar adoption has been the federal Investment Tax Credit (ITC). �e ITC was
originally established by the Energy Policy Act of 2005, and allowed solar buyers to deduct
30% of the solar installation price from their federal taxes through 2019. In 2020, the incentive
dropped to 26% and is scheduled to be eliminated by 2022. �e expiration of the ITC has been
controversial. �e solar industry, environmentalists, and many politicians have argued that
renewable energy subsidies are critical to addressing climate change. On the other hand, op-

44�e lower bound interpretation also relies on an implicit assumption that buyers report truthfully whether
they have o�-platform bids.

45Sexton et al. (2018) calculate the annual pollution damages avoided per unit of residential solar capacity for
each ZIP code. To calculate the life-time net present value of a solar installation, I assume that each solar system
has a 20-year life span and a discount rate of 5%.
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ponents have countered that the tax credits are not cost-e�ective and place too large a burden
on taxpayers.

Table 8: E�ects of Government Subsidies on Competition, Prices, and Welfare

Panel A: Market Outcomes
Counterfactual
ITC No ITC

Competition
Bids Per Project 3.35 3.06
Prices
Gross Price Per Wa� (All Bids) 3.52 3.10
Net Price Per Wa� (All Bids) 2.47 3.10
Net Price Per Wa� (Lowest) 2.25 2.82
Net Price Per Wa� (Selected) 2.40 2.97
Output and Welfare E�ects
Solar Installations - -33%
Pollution Damages Avoided - -33%
Consumer Surplus - -35%
Producer Surplus - -56%
Bid Preparation Costs - -42%
Total Welfare incl. Subsidy Cost - -22%

Panel B: Average E�ects of ITC Subsidies
∆ Pollution Damages Avoided/ Subsidy Cost 0.19
∆ Consumer Surplus/ Subsidy Cost 0.80
∆ Producer Surplus/ Subsidy Cost 0.70
∆ Bid Preparation Costs/ Subsidy Cost 0.03
∆ Welfare/ Subsidy Cost 0.69

Notes: Table summarizes counterfactual market simulations with and without the federal investment tax credit
which compensates solar buyers for 30% of the purchase price on a solar system.

To understand the e�ects of removing the ITC, I simulate counterfactual market outcomes
with the 30% subsidy and without the 30% subsidy. In the counterfactual simulations, sellers
update both participation and bidding strategies to account for the subsidy availability (or re-
moval). I discuss the algorithm used to solve the counterfactual equilibria in the appendix.

Panel A of Table 8 shows that eliminating the ITC results in an 9% reduction in the number
of bids per project. Without the ITC, fewer installers �nd it worthwhile to submit bids because,
for some projects, expected pro�ts no longer cover their bid preparation costs. Removing the
ITC also results in a 25.5% increase in the net price of solar bids obtained by buyers. �is net
price increase of $0.63/wa�, implies a $4,600 increase on a typical-sized system. �e consumer
burden of removing the ITC is partly mitigated by sellers reducing their gross bid prices by
$0.42/wa� on average. Sellers �nd it optimal to reduce o�er prices a�er the subsidy removal
to recoup some sale quantity losses. If sellers did not change their bids in reaction to the ITC
removal, the net bid price would increase by 42.8%.46 �e mean lowest bid price and the mean
price of selected bids also increase by 25.3% and 23.7% when the ITC is eliminated.

�e bo�om of Panel A shows that removing the ITC also has signi�cant e�ects on solar in-
stallation decisions, consumer welfare, producer welfare, and environmental outcomes. More
speci�cally, the number of solar installations falls by 33% without the subsidy. Similarly, the
expected pollution reductions caused by solar system investments decline by 33%. Removing

46�e ITC provides a credit for 30% of the gross price, therefore, with the ITC, the net price equals 7/10 of the
gross price, so removing the ITC without changing the gross bid price leads to a 10/7 (42.8%) increase in net price.
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the ITC also results in a 35% reduction in consumer surplus a�ained by solar shoppers. �e
withdrawal of the ITC causes even more signi�cant losses for producers. In particular, pro-
ducer surplus falls by 56% due to the combination of lower gross margins and reduced sales
volume. Sellers do bene�t from a 42% reduction in bid preparation cost due to lower auction
participation. Notably, the participation decline comes mostly from installers with relatively
high bid preparation costs. However, as we saw in previous sections, bid preparation costs are
relatively small compared to the overall installation cost. �e bo�om row of Panel A, we see
that withdrawing the ITC subsidies causes a 22% reduction in total welfare. �at is to say, we
see that the ITC subsidies cause an increase in total welfare.

In Panel B, I investigate the mechanisms driving the welfare result. �e top row shows
that the ITC reduces pollution damages by $0.19 for each dollar of subsidy expenditure. �is
number indicates that the subsidy is a relatively ine�cient way to reduce pollution damages
by itself. However, the next row shows that the ITC fosters substantial welfare increases for
producers and consumers in the solar market. �e ITC increases average consumer surplus
by $0.80 per subsidy-dollar. Also, the subsidy expands producer marginal pro�ts by $0.70 per
subsidy-dollar. We also see that the ITC increases bid preparation costs by $0.03 per subsidy-
dollar by encouraging more bids. Summing all of these e�ects together and subtracting the
$1.00 subsidy cost, we obtain the net welfare bene�t of $0.69 per subsidy-dollar ($0.19+$0.80+

$0.70 − $0.03 − $1.00 = $0.69). Notably, the subsidy’s external environmental bene�ts only
explain a portion of the welfare gain, whereas the market participants’ increased rents explain
most of the welfare gain. �e ITC increases welfare by correcting for unpriced environmental
externalities and reducing deadweight loss caused by market power. In particular, we have seen
that solar installations are priced well above marginal cost. �erefore, the subsidy encourages
more transactions where buyers’ willingness-to-pay exceeds the seller’s marginal cost. As a
result, the ITC causes a net welfare gain.

�ere are several limitations and caveats to keep in mind when interpreting the results of
the welfare analysis. First, I do not consider several potentially important externalities of solar
installations such a electricity transmission and distribution costs (Feger et al., 2017), learning-
by-doing (Bollinger and Gillingham, 2019), peer e�ects (Bollinger and Gillingham, 2012), or
generation reserve costs (Gowrisankaran et al., 2016) in the welfare calculation. Second, the
ITC policy covers all residential solar installations in the U.S., whereas the model is estimated
using only solar installation projects that originated through the online platform. �e intensity
of bidding competition is likely to be substantially di�erent for projects originating o�-platform
relative to on-platform. For this reason, we would expect o�-platform bids to respond di�er-
ently to the ITC availability, yielding di�erent quantitative welfare e�ects. �us, we should be
cautious to extrapolated the exact welfare estimates out of sample. Nonetheless, if we believe
that competition for o�-platform solar projects is less intense than competition for projects
on the platforms–and therefore subject to higher markups—we would also expect substantial
net bene�ts of subsidizing o�-platform projects to constrain market power. Finally, the US
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ITC policy also provides a tax incentive for utility-scale solar projects. Market structure in the
utility-scale market is likely to di�er from the residential market, and therefore, the welfare
impacts of removing the ITC will also be likely to vary across these two markets.

6 Conclusion

Online platforms o�er a convenient means for buyers and sellers to connect in markets with
negotiated prices. Nonetheless, many such markets still widely operate via bilateral negotia-
tions. In the solar PV market context, we have seen that online platforms can facilitate sizable
price reductions and welfare gains for consumers. A primary mechanism through which the
platform helps consumers is by providing them access to additional bids. �ese price reduc-
tions are particularly relevant in the solar PV market because (non-hardware) so� costs, which
include installer markups, now account for over 70% of the price of a typical solar installation.
�us, policymakers aimed at reducing solar prices could consider informing the public about
existing platforms or develop their own platforms to link buyers and sellers. Platforms could
also yields similar bene�ts in other markets characterized by high search costs such as home
mortgages or building energy e�ciency retro�ts.

Notably, though, we have seen that welfare gains will not be evenly distributed across con-
sumers when sellers can bid on projects selectively. In particular, households with higher home
values obtain the most signi�cant bene�ts because these wealthier households a�ract relatively
more bids through the platform. �is �nding implies that other complementary policies, such
as progressive subsidies, may be required if policymakers desire more equitable solar invest-
ment across income groups. �ese distributional e�ects are also important to keep in mind as
other markets move more towards online platforms to link market participants.

�e counterfactuals also provide new evidence on the welfare impacts of investment sub-
sidies. Policymakers most commonly justify renewable energy subsidies based on positive en-
vironmental externalities. However, government subsidies are o�en introduced into markets
with multiple existing distortions such as imperfect competition, imperfect information, in ad-
dition to environmental externalities. Robinson (1933) was the �rst to note that subsidies could
improve welfare in imperfectly-competitive markets, and Judd (2002) later argued that govern-
ment subsidies could have particularly large welfare bene�ts in markets for capital-intensive
goods. �is paper empirically quanti�es the welfare bene�ts of a prominent investment subsidy
in the solar PV market, and highlights that subsidies can improve total welfare by constraining
market power in addition to reducing pollution damages from electricity generation. �ese
results have implications for tax and subsidy policy in other imperfectly-competitive markets.

41



References

Allen, J., Clark, R., and Houde, J.-F. (2019). Search frictions and market power in negotiated-
price markets. Journal of Political Economy, 127(4):1550–1598.

Barbose, G., Darghouth, N., Elmallah, S., Forrester, S., Kristina SH, K., Millstein, D., Rand, J.,
Co�on, W., Sherwood, S., and O’Shaughnessy, E. (2019). Tracking the sun: Pricing and
design trends for distributed photovoltaic systems in the united states - 2019 edition.

Barbose, G., Darghouth, N., Hoen, B., and Wiser, R. (2018). Income trends of residential pv
adopters: An analysis of household-level income estimates.

Baye, M. R. and Morgan, J. (2001). Information gatekeepers on the internet and the competi-
tiveness of homogeneous product markets. American Economic Review, 91(3):454–474.

Berry, S., Levinsohn, J., and Pakes, A. (1995). Automobile prices in market equilibrium. Econo-
metrica, pages 841–890.

Bollinger, B. and Gillingham, K. (2012). Peer e�ects in the di�usion of solar photovoltaic panels.
Marketing Science, 31(6):900–912.

Bollinger, B. and Gillingham, K. (2019). Learning-by-doing in solar photovoltaic installations.
Available at SSRN 2342406.

Bollinger, B., Gillingham, K., and Lamp, S. (2020). Equilibrium e�ects of competition on solar
photovoltaic demand and pricing. Working Paper.

Borenstein, S. (2017). Private Net Bene�ts of Residential Solar PV: �e Role of Electricity Tar-
i�s, Tax Incentives, and Rebates. Journal of the Association of Environmental and Resource
Economists, 4(S1):S85–S122.

Brown, J. R. and Goolsbee, A. (2002). Does the Internet make markets more competitive? Evi-
dence from the life insurance industry. Journal of Political Economy, 110(3):481–507.

Brown, Z. Y. (2017). An Empirical Model of Price Transparency and Markups in Health Care.
Technical report, Working Paper, Columbia University.

Burr, C. (2014). Subsidies and Investments in the Solar Power Market. Technical report, Working
Paper, University of Colorado.

Caceres, C. (2019). Analyzing the e�ects of �nancial and housing wealth on consumption using
micro data. Technical report.

Cardell, N. S. (1997). Variance components structures for the extreme-value and logistic distri-
butions with application to models of heterogeneity. Econometric �eory, 13(2):185–213.

42



De Groote, O. and Verboven, F. (2019). Subsidies and time discounting in new technology adop-
tion: Evidence from solar photovoltaic systems. American Economic Review, 109(6):2137–72.

Diamond, P. A. (1971). A model of price adjustment. Journal of Economic �eory, 3(2):156–168.

Ellison, G. and Ellison, S. F. (2009). Search, obfuscation, and price elasticities on the internet.
Econometrica, 77(2):427–452.

Feger, F., Pavanini, N., and Radulescu, D. (2017). Welfare and redistribution in residential elec-
tricity markets with solar power.

Feldman, D. (2014). Photovoltaic (PV) pricing trends: Historical, recent, and near-term projec-
tions.

Fu, R., Chung, D., Lowder, T., Feldman, D., Ardani, K., and Margolis, R. (2016). U.S. Solar Photo-
voltaic System Cost Benchmark: Q1 2016.

Gehrig, T. (1993). Intermediation in search markets. Journal of Economics & Management Strat-
egy, 2(1):97–120.

Gerarden, T. (2017). Demanding innovation: �e impact of consumer subsidies on solar panel
production costs. Technical report, Working paper, Harvard University.

Gillingham, K., Deng, H., Wiser, R., Darghouth, N., Nemet, G., Barbose, G., Rai, V., Dong, C. G.,
and others (2016). Deconstructing solar photovoltaic pricing. �e Energy Journal, 37(3).

Gillingham, K. and Tsvetanov, T. (2019). Hurdles and steps: Estimating demand for solar pho-
tovoltaics. �antitative Economics, 10(1):275–310.

Goeree, M. S. (2008). Limited information and advertising in the us personal computer industry.
Econometrica, 76(5):1017–1074.
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Appendix

Algorithm for Solving Counterfactuals with Fixed # of Bids

1. For each project i, start with a vector of all bids submi�ed for projects of that type (B0), a
�xed number of bids (N ), and entry probability weights for each potential seller for that
auction type (E0).

2. Calculate each �rm’s optimal price given the current distribution of prices and entry
probabilities from step one. Store the new vector of bids B1.

• Equation 5 is the �rst order condition for each �rm’s optimal price. �e �rst order
condition does not have a closed form, so simulate S=100 iterations of each auction
type to approximate the integrals numerically.

3. Measure the di�erence between each of the original prices and the updated prices. Stop
if ||abs(B1 −B0)||∞ < δb. Otherwise replace B0 with B1 and then start over at Step 1.

• I set δb = .00001

Algorithm for Solving ITC Counterfactuals with Endogenous Bidding

1. For each auction type, start with a vector of all bids submi�ed for projects of that type
(B1) and start with an entry probability for each potential entrant for that auction type
(E0).

2. Draw S=100 vectors of non-price characteristics for potential entrant. Draw each vector
of non-price characteristics at random from the list of all bids made by that project-seller
type pair.

3. Draw S=100 uniform draws for each potential entrant to determine random entry for
each simulation iteration.

• Choose entrants for each simulation iteration by determining if the random uniform
draw is less than E0

• Note: To ensure convergence, I hold the initial S=100 sets of simulated entrants �xed
throughout the algorithm even though the entry probabilities will change in the coun-
terfactuals. I use an importance sampling approach similar to Guerre et al. (2000) to
adjust for the fact that I do not update the sets of entrants at each step.

4. Set E0=E1

5. Calculate each �rm’s optimal price given the current distribution of prices B1 and entry
probabilities E1. Store the new vector of bids B2.
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• Equation 5 is the �rst order condition for each �rm’s optimal price. �e �rst order
condition does not have a closed form, so use the S=100 simulation iterations of
each auction type to approximate the integrals numerically. When calculating the
averages, I use importance weights to adjust for that fact that the competitors were
drawn according to E0 instead of E1.

6. Use the updated prices (and conditional winning probabilities) from Step 2 to calculate
each potential entrant’s expected marginal pro�t of entering the auction. �en use the
new expected pro�ts to update each �rm’s entry probability. Store the new entry proba-
bilities E2.

7. Measure the di�erence between each of the original prices and the updated prices and
measure the di�erence between the original and updated entry probabilities. Stop if
||abs(B2 −B1)||∞ < δb and ||abs(E2 − E1)||∞ < δe. Otherwise replace B1 with B2

and E1 with E2 and then start over at Step 4.

• I set δb = 0.00001 and δe = .0.00001.

Figure 6: Google Maps Photo of the Roo�op for a Potential Project
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Figure 7: EnergySage Dashboard for Comparing Submi�ed �otes

Notes: EnergySage quote comparison page in late 2016.

Table 9: Project Count by Location and Year

2014 2015 2016 Total
AZ 57 110 563 730
CA 353 1053 3417 4823
CO 30 140 365 535
CT 132 559 330 1021
MA 129 400 1025 1554
NY 62 173 698 933
TX 49 156 687 892
Total 812 2591 7085 10488

48



Table 10: Regressions of Bid Price ($/wa�) on Order of Bid

(1) (2)
Gross Price ($/wa�) Gross Price ($/wa�)

Order of Bid 0.00164 0.00125
(0.00147) (0.00141)

Total Bids Control Yes Yes
System Size Control Yes Yes
CBSA FE Yes Yes
Half-Year FE Yes Yes
Installer FE No Yes
N 37080 37080
R2 0.299 0.363
Notes: All standard errors listed in parenthesis are clustered by project id.

Table 11: E�ects of Competition on Bid Prices and Proposed System Size

Gross Price ($) System Capacity (W)
Electric Bill ($/month) 6.066 22.40

(0.783) (0.803)

Home Value ($ 1000s) 0.391 0.162
(0.153) (0.146)

Mean # of Bids in Market -364.9 15.11
(32.39) (31.68)

Mean # of Bids in Market × Electric Bill ($/month) -0.938 -0.243
(0.181) (0.192)

Mean # of Bids in Market × Home Value ($ 1000s) -0.0596 0.00773
(0.0341) (0.0340)

Capacity, Capacity2 Controls Yes -
CBSA FE Yes Yes
Half-Year FE Yes Yes
Panel Brand FE Yes Yes
Inverter Brand FE Yes Yes
Installer FE Yes Yes
N 37080 37080
R2 0.948 0.597

Notes: �e mean number of bids in a market is de�ned as the average number of bids for all projects within the
same CBSA and the same half-year. Household electric bill and home value variables are demeaned before running
the regressions. Standard errors clustered by project are in parentheses.
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Figure 8: Auction Participation and Pricing By Electricity Expenditure
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Notes: Panels b,c linearly adjust the prices for the size (kW) of the system size and the time (half year) the project
occurred before plo�ing. In panel c, the mean bids in the market is the average number of bids across all projects
within the same CBSA and the same half year.
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Figure 9: Potential Project Locations

Notes: Count is the total number of potential projects within a ZIP code during the full sample.

Figure 10: Correlation of Variables from Di�erent Data Sources
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Notes: �e binned sca�er plots project the average monthly electricity bill as reported by consumers directly
through the EnergySage website on the y-axis. Home square footage and home market value from In�nite Media,
Inc. are plo�ed on the x-axis. In�nite Media, Inc. reports home market value as a range of values for each
household and the middle value of the range is used.
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Figure 11: Household Income Distributions - Platform Users vs. All Solar PV Adopters
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Notes: �e data on income distributions for o�-platform solar adopters were obtained from Barbose et al. (2018).

Figure 12: Model Fi�ed Entry Probabilities - 2016 H1, Nassau County-Su�olk County, NY

Notes: For a single market, the lines plot the change in entry probability as expected marginal pro�ts increase for
sellers with di�erent ratings. �e entry probabilities are implied by the estimated entry cost distribution. �e grey
bars show the frequency distribution of expected marginal pro�t for projects in Nassau County-Su�olk County,
NY in 2016 H1.
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Figure 13: US Solar Installation Price Dynamics

Notes: �e line represents the annual percentage change in the median resi-
dential solar installation price (per wa�) . Figure constructed using data from
Barbose et al. (2019).

Figure 14: Assessing Marginal Cost Estimates

(a) Hardware Cost and MC Estimate (b) MC Estimates vs. Stated Costs

Notes: Panel 14a compares the evolution of estimated marginal costs (mean) to Bloomberg’s solar PV cost index
for the �nal two years of the sample. �e Bloomberg cost index is the sum of the Bloomberg’s polysilicon panel
cost index and Bloomberg’s inverter cost index. Panel 14b compares estimated marginal cost (mean) to NREL’s
2016 cost benchmark and stated costs reported by three large publicly-trade installers.
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Table 12: Alternate Model Speci�cations - Adding Controls

(1) - Base (2) (3) (4) (5)
λ 0.37 (0.06) 0.37 (0.06) 0.37 (0.06) 0.37 (0.06) 0.37 (0.06)
β - Price -0.72 (0.11) -0.72 (0.11) -0.71 (0.11) -0.71 (0.11) -0.71 (0.11)
β - Price × Home Mkt. Value Q2 0.07 (0.04) 0.07 (0.04) 0.07 (0.05) 0.06 (0.05) 0.06 (0.05)
β - Price × Home Mkt. Value Q3 0.08 (0.05) 0.08 (0.05) 0.08 (0.05) 0.07 (0.05) 0.06 (0.06)
β - Price × Home Mkt. Value Q4 0.09 (0.06) 0.09 (0.06) 0.09 (0.06) 0.07 (0.06) 0.07 (0.07)

Mean Own-Price Elasticity -1.59 -1.59 -1.58 -1.60 -1.60
Mean Markup ($/wa�) 1.59 1.59 1.60 1.58 1.58
Log Likelihood -3823.54 -3821.79 -3819.75 -3820.01 -3821.43

Installer Attributes
Fixed E�ects for Permanent Installers Y Y Y Y Y
Installer Rating and Exper. Controls Y Y Y Y Y
Experience/Time on Platform Controls N Y N N N
Non-Price Bid Attributes
Hardware �ality Controls Y Y N Y Y
Panel Brand Fixed E�ects N N Y N N
Project Attributes × Inside Good
Electric Bill �artile Fixed E�ects Y Y Y Y Y
CBSA Fixed E�ects Y Y Y Y Y
Half-Year Fixed E�ects Y Y Y Y Y
O�-Platform �ote Fixed E�ect Y Y Y Y Y
Bachelor’s Degree Fixed E�ect N N N Y N
Race Fixed E�ects N N N Y N
Over Age 65 Fixed E�ect N N N Y N
Home Sq. Footage �artile Fixed E�ects N N N N Y
Home Age �artile Fixed E�ects N N N N Y

Notes: �e top panel displays the nesting parameter and price coe�cients for the base model and alternate demand
speci�cations. Standard errors are in parentheses. �e middle panel shows the mean own-price elasticity and mean
implied markup across all bids in the data. �e bo�om panel indicates which additional controls are included in
utility. All models include �xed e�ects for all “permanent” installers, de�ned as any installer that submi�ed over
300 bids during the sample. All models include dummies for installers’ star rating in 2016 and overall residential
installation experience. �e second model includes two dummies that indicate if the installer had 1) been bidding
on EnergySage for at least 6 months, and 2) been bidding on EnergySage for over a year at the time the bid was
submi�ed. All models include a microinverter dummy to control for hardware quality. Models 1,2,4, and 5 include
dummies for “premium” and “premium plus” panel brands. �e third model includes panel-brand dummies for
the largest 7 panel manufacturers. �e fourth model includes additional demographic control variables such as
the education, race, and age of the household head. �e fourth model also controls for the home square footage
quartile. All models include electric bill quartile �xed e�ects, CBSA �xed e�ects, and half-year �xed e�ects. All
variables listed under Project A�ributes are interacted with the “inside good”. �e ��h model interacts price with
a dummy for whether the potential buyer stated that the they already had quotes from another installer o� of the
platform. Standard errors are in parentheses.
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Table 13: Alternate Model Speci�cations - Functional Form and System Capacity Choice

(1) - Base (2) (3)
λ 0.37 (0.06) 0.37 (0.06) 0.37 (0.06)
β - Price -0.72

(0.11)
-0.72
(0.12)

-1.91 (0.3)

β - Price × Home Mkt. Value Q2 0.07 (0.04) 0.07 (0.05) 0.18 (0.12)
β - Price × Home Mkt. Value Q3 0.08 (0.05) 0.08 (0.05) 0.2 (0.15)
β - Price × Home Mkt. Value Q4 0.09 (0.06) 0.09 (0.06) 0.23 (0.16)

Mean Own-Price Elasticity -1.59 -1.61 -1.70
Mean Markup ($/wa�) 1.59 1.57 1.49
Log Likelihood -3823.54 -3823.50 -3823.49

Price Variable $/wa� $/wa� ln($/wa�)
Seller Proposed System Capacity Control (W) N Y N
Installer Attributes
Fixed E�ects for Permanent Installers Y Y Y
Installer Rating and Exper. Controls Y Y Y
Non-Price Bid Attributes
Hardware �ality Controls Y Y Y
Project Attributes × Inside Good
Electric Bill �artile Fixed E�ects Y Y Y
CBSA Fixed E�ects Y Y Y
Half-Year Fixed E�ects Y Y Y
O�-Platform �ote Fixed E�ect Y Y Y

Notes: �e �rst column presents the baseline utility estimates with the price variable measured linearly in $/wa�.
�e second column allows each seller’s proposed system capacity (W) to enter as a non-price a�ribute in the
buyer utility function. �e �nal column estimates a demand with the natural logarithm of unit price entering
utility. Standard errors are in parentheses.
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Table 14: Alternate Model Speci�cations - Removing Controls

(1) - Base (2) (3) (4) (5)
λ 0.37 (0.06) 0.34 (0.06) 0.39 (0.06) 0.41 (0.06) 0.44 (0.06)
β - Price -0.72 (0.11) -0.7 (0.11) -0.83 (0.1) -0.59 (0.1) -0.57 (0.09)
β - Price × Home Mkt. Value Q2 0.07 (0.04) 0.07 (0.04) 0.07 (0.04)
β - Price × Home Mkt. Value Q3 0.08 (0.05) 0.09 (0.05) 0.08 (0.05)
β - Price × Home Mkt. Value Q4 0.09 (0.06) 0.1 (0.06) 0.1 (0.06)

Mean Own-Price Elasticity -1.59 -1.50 -1.90 -1.51 -1.51
Mean Markup ($/wa�) 1.59 1.68 1.33 1.67 1.68
Log Likelihood -3823.54 -3840.94 -3887.81 -3849.38 -3867.63

Installer Attributes
Fixed E�ects for Permanent Installers Y Y N Y Y
Installer Rating and Exper. Controls Y N Y Y Y
Non-Price Bid Attributes
Hardware �ality Controls Y Y Y Y Y
Project Attributes × Inside Good
Electric Bill �artile Fixed E�ects Y Y Y N N
CBSA Fixed E�ects Y Y Y Y N
State Fixed E�ects N N N N Y
Half-Year Fixed E�ects Y Y Y Y Y
O�-Platform �ote Fixed E�ect Y Y Y Y Y

Notes: �e top panel displays the nesting parameter and price coe�cients for the base model and alternate demand
speci�cations. Standard errors are in parentheses. �e middle panel shows the mean own-price elasticity and mean
implied markup across all bids in the data. �e bo�om panel indicates which additional controls are included in
utility. Models 1,4, and 5 include dummies for installers’ star rating in 2016 and overall residential installation
experience: one dummy indicating the installer has completed over 100 installs , and another dummy indicating
over 1000 installs completed. Models 1,2,4, and 5 include �xed e�ects for all “permanent” installers, de�ned as any
installer that submi�ed over 300 bids during the sample. All models include dummies for microinverter, “premium
panel brand” and “premium plus panel brand” to control for hardware quality. Some models include electric bill
quartile �xed e�ects, CBSA �xed e�ects, state �xed e�ects, and half-year �xed e�ects. All variables listed under
Project A�ributes are interacted with the “inside good”. Standard errors are in parentheses.
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Table 15: Alternate Model Speci�cations - Drop States with Time-Varying Subsidies

(1) - Base (2)
λ 0.37 (0.06) 0.38 (0.07)
β - Price -0.72 (0.11) -0.78 (0.13)
β - Price × Home Mkt. Value Q2 0.07 (0.04) 0.06 (0.06)
β - Price × Home Mkt. Value Q3 0.08 (0.05) 0.08 (0.07)
β - Price × Home Mkt. Value Q4 0.09 (0.06) 0.1 (0.07)

Mean Own-Price Elasticity -1.59 -1.73
Mean Markup ($/wa�) 1.59 1.45
Log Likelihood -3823.54 -3009.82

Sample Full Drop NY & CT
Installer Attributes
Fixed E�ects for Permanent Installers Y Y
Installer Rating and Exper. Controls Y Y
Non-Price Bid Attributes
Hardware �ality Controls Y Y
Project Attributes × Inside Good
Electric Bill �artile Fixed E�ects Y Y
CBSA Fixed E�ects Y Y
Half-Year Fixed E�ects Y Y
O�-Platform �ote Fixed E�ect Y Y

Notes: �e �rst column presents the baseline utility estimates. �e second column shows estimates of the equiva-
lent model, but drops all auctions in New York and Connecticut. New York and Connecticut had changes in solar
incentives during the sample period.

Table 16: Entry Cost Estimates

µ σ
Star Rating ≤ 4 4.349 (0.597) Constant 4.733 (0.234)
Star Rating = 4.5 −2.818 (0.195) Star Rating ≤ 4 3.567 (0.530)
Star Rating = 5 0.275 (0.124) Star Rating = 4.5 −0.143 (0.262)
Installs Completed: 100-1000 0.953 (0.103) Star Rating = 5 0.173 (0.171)
Installs Completed: >1000 1.101 (0.114)

Installer Rating Mean Bid Preparation Cost Share of Total Bids
<= 4 Stars $ 5.33 0.14
4.5 Stars $ 13.28 0.08
5 Stars $ 20.97 0.61
No Ratings $ 18.62 0.16

Fixed E�ects Pseudo Log Likelihood

CBSA Fixed E�ects in µ Yes -62192.04
Half-Year Fixed E�ects in µ Yes
Permanent Installer Fixed E�ects in µ Yes
Notes: �e top panel shows several of the parameter estimates from the entry cost model, as well as standard
errors in parentheses. Coe�cients for the CBSA �xed e�ects, half-year �xed e�ects, and permanent installer
�xed e�ects in µ are not shown. �e middle panel summarizes the expected bid preparation costs conditional
on bidding.

57



Table 17: Marginal Costs Across CBSAs

Panel A: Lowest Marginal Cost CBSAs in 2016 H1

CBSA MC (Mean) MC (SD)
Phoenix-Mesa-Sco�sdale, AZ 1.46 0.58
Tucson, AZ 1.58 0.36
Other, TX 1.62 0.47
Austin-Round Rock, TX 1.68 0.41
Other, CO 1.68 0.35
Other, AZ 1.7 0.4
Fort Worth-Arlington, TX 1.72 0.36
Dallas-Plano-Irving, TX 1.74 0.43
Denver-Aurora-Lakewood, CO 1.74 0.34
San Antonio-New Braunfels, TX 1.86 0.34

Panel B: Highest Marginal Cost CBSAs in 2016 H1

CBSA MC (Mean) MC (SD)
New York, NY 2.42 0.7
Providence-Warwick, RI-MA 2.4 0.43
Other, CT 2.36 0.68
Hartford, CT 2.28 0.46
New Haven-Milford, CT 2.28 0.43
Worcester, MA-CT 2.28 0.4
Other, NY 2.26 0.62
Other, MA 2.25 0.52
San Jose-Sunnyvale-Santa Clara, CA 2.25 0.5
Bridgeport-Stamford-Norwalk, CT 2.23 0.45

Notes: �e top panel shows the mean and standard deviation of marginal cost for the ten lowest cost CBSAs in
2016 H1. �e lower panel shows the mean and standard deviation of marginal cost for the ten highest cost CBSAs
in 2016 H1.
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Table 18: Consumer Surplus Gains from Access to the Platform by CBSA

Panel A: CBSAs with Smallest Consumer Surplus Gain ($)

CBSA CS (Mean) CS (SD)
Other, TX 201.92 192.54
Fort Worth-Arlington, TX 302.19 196.11
Fresno, CA 459.66 278.33
Austin-Round Rock, TX 513.07 344.91
Other, AZ 520.15 338.13
Dallas-Plano-Irving, TX 528.81 327.74
Phoenix-Mesa-Sco�sdale, AZ 551.27 505.39
Denver-Aurora-Lakewood, CO 706.89 522.41
Bridgeport-Stamford-Norwalk, CT 732.01 457.52
San Antonio-New Braunfels, TX 780.45 434.97

Panel B: CBSAs with Highest Consumer Surplus Gain ($)

CBSA CS (Mean) CS (SD)
Norwich-New London, CT 3212.59 2019.84
Worcester, MA-CT 3182.82 2059.99
Cambridge-Newton-Framingham, MA 3012.63 1887.74
Hartford, CT 2878.94 1781.09
Boston, MA 2653.86 1526.9
New Haven-Milford, CT 1960.25 1183.3
Other, MA 1952.9 1160.51
Other, NY 1785.88 1125.69
Other, CT 1737.28 1149.16
Providence-Warwick, RI-MA 1726 906.67

Notes: �e top panel shows the mean and standard deviation of consumer surplus for the bo�om ten CBSAs. �e
lower panel shows the mean and standard deviation of consumer surplus for the top ten CBSAs.
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